OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4237–4246

Effects of refractive turbulence on ground-based verification of coherent Doppler lidar performance

Rod Frehlich  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4237-4246 (2000)
http://dx.doi.org/10.1364/AO.39.004237


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of refractive turbulence on ground-based verification of the far-field performance of coherent Doppler lidar are determined with numerical simulation and compared with the first-order terms of a theoretical expansion. The collimated small-beam far-field test has better performance than the focused-beam test. For typical ground-based conditions, higher-order terms of the theoretical expansion are required for convergence.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: January 3, 2000
Revised Manuscript: May 5, 2000
Published: August 20, 2000

Citation
Rod Frehlich, "Effects of refractive turbulence on ground-based verification of coherent Doppler lidar performance," Appl. Opt. 39, 4237-4246 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  3. R. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994). [CrossRef]
  4. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  5. R. G. Frehlich, S. Hannon, S. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorol. 86, 233–256 (1998). [CrossRef]
  6. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982). [CrossRef] [PubMed]
  7. J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988). [CrossRef] [PubMed]
  8. D. M. Tratt, R. T. Menzies, “Unstable resonator antenna properties in coherent lidar applications: a comparative study,” Appl. Opt. 27, 3645–3649 (1988). [CrossRef] [PubMed]
  9. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1990). [CrossRef] [PubMed]
  10. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  11. D. M. Tratt, “Optimizing coherent lidar performance with graded-reflectance laser resonator optics,” Appl. Opt. 31, 4233–4239 (1992). [CrossRef] [PubMed]
  12. B. J. Rye, R. G. Frehlich, “Optimal truncation of Gaussian beams for coherent lidar using incoherent backscatter,” Appl. Opt. 31, 2891–2899 (1992). [CrossRef] [PubMed]
  13. R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993). [CrossRef] [PubMed]
  14. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 1217–1230 (1994). [CrossRef]
  15. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967). [CrossRef]
  16. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  17. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981). [CrossRef] [PubMed]
  18. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  19. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981); erratum, Appl. Opt. 20, 1502 (1981).
  20. J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–475 (1982). [CrossRef] [PubMed]
  21. R. Murty, “Refractive turbulence effects on truncated Gaussian beam heterodyne lidar,” Appl. Opt. 23, 2498–2502 (1984). [CrossRef] [PubMed]
  22. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, Mass., 1987).
  23. M. S. Belen’kii, “Effect of atmospheric turbulence on heterodyne lidar performance,” Appl. Opt. 32, 5368–5372 (1993). [CrossRef] [PubMed]
  24. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  25. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  26. J. Martin, S. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  27. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  28. J. Martin, “Simulation of wave propagation in random: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (SPIE Press, Bellingham, Wash., 1993).
  29. Wm. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  30. D. G. Youmans, V. S. Gudimetla, “Round-trip turbulence scintillation effects on laser radar: Monte Carlo simulation results for unresolved targets,” in Laser Radar Technology and Applications II, G. W. Kamerman, ed., Proc. SPIE3065, 71–83 (1997). [CrossRef]
  31. A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).
  32. V. A. Banakh, I. N. Smalikho, Ch. Werner, “Effect of refractive turbulence on Doppler lidar operation in atmosphere. Numerical simulation,” in Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 10227 Wincopin Circle, Columbia, Md. 21044-3498, 1999).
  33. R. G. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000). [CrossRef]
  34. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  35. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  36. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994). [CrossRef] [PubMed]
  37. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 51, 1350–1358 (1966); Appl. Opt. 5, 1588–1594 (1966). [CrossRef]
  38. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978). [CrossRef]
  39. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992). [CrossRef]
  40. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).
  41. G. R. Ochs, R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985). [CrossRef] [PubMed]
  42. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  43. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  44. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar measured winds from space: an essential component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  45. M. J. Kavaya, G. D. Emmitt, “Space readiness coherent lidar experiment (SPARCLE) Space Shuttle mission,” in Laser Radar Technology and Applications III, G. W. Kamerman, ed., Proc. SPIE3380, 2–11 (1998). [CrossRef]
  46. M. J. Kavaya, Global Hydrology and Climate Center, NASA Marshall Space Flight Center, Huntsville, Ala. 35812 (personal communication, 1999).
  47. A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci. 4, 295–305 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited