OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4313–4319

Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror

Inon Moshe and Steven Jackel  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4313-4319 (2000)
http://dx.doi.org/10.1364/AO.39.004313


View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhanced correction of thermally induced birefringence in the presence of strong single-pass, azimuthally dependent bipolar focusing was achieved in single-rod laser oscillators by use of an adaptive optic rear mirror with image relay and aberration correction capabilities. Together with a Faraday rotator, the imaging variable radius mirror was successfully tested in stable and unstable Nd:Cr:GSGG power oscillators under variable pump power conditions from 0 to 800 W. Birefringence correction in the absence of ray retracing was achieved.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(140.3410) Lasers and laser optics : Laser resonators
(140.6810) Lasers and laser optics : Thermal effects
(260.1440) Physical optics : Birefringence

History
Original Manuscript: September 3, 1999
Revised Manuscript: February 22, 2000
Published: August 20, 2000

Citation
Inon Moshe and Steven Jackel, "Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror," Appl. Opt. 39, 4313-4319 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. P. Barnes, S. J. Scalise, “Distributed aperture effect in laser rods with negative lenses,” Appl. Opt. 17, 1537–1540 (1978). [CrossRef] [PubMed]
  2. D. C. Hanna, C. G. Sawyers, M. A. Yaratich, “Telescopic resonator for large volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493–507 (1981). [CrossRef]
  3. I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998). [CrossRef]
  4. I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators by use of a variable radius mirror,” Appl. Opt. 37, 7044–7048 (1998). [CrossRef]
  5. W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970). [CrossRef]
  6. W. KoechnerSolid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996). [CrossRef]
  7. S. M. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997). [CrossRef]
  8. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical laser Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996). [CrossRef]
  9. N. Kugler, S. Dong, Q. Lü, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997). [CrossRef]
  10. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998). [CrossRef]
  11. S. A. Chetkin, G. V. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993). [CrossRef]
  12. N. Pavel, T. Dascalu, V. Lupei, “Variable reflectivity mirror unstable resonator with deformable mirror thermal compensation,” Opt. Commun. 123, 115–120 (1996). [CrossRef]
  13. C. Swift, E. Bliss, D. Lenz, R. Miller, “Deformable mirror for zigzag solid-state lasers,” Opt. Eng. 29, 1199–1203 (1990). [CrossRef]
  14. D. Sumida, M. S. Mangir, D. A. Rockwell, “Laser-related properties of Nd:Cr:GSGG,” J. Opt. Soc. Am. B 11, 2066–2078 (1994). [CrossRef]
  15. J. A. Caird, M. D. Shinn, T. A. Kirchoff, L. K. Smith, R. E. Wilder, “Measurements of losses and lasing efficiency in GSGG:Cr:Nd and YAG:Nd laser rods,” Appl. Opt. 25, 4294–4301 (1986). [CrossRef]
  16. D. S. Sumida, D. A. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992). [CrossRef]
  17. S. M. Jackel, A. Kaufman, R. Lallouz, “High-repetition-rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited