OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4327–4332

Dynamic Motion Analysis of Optically Trapped Nonspherical Particles with Off-Axis Position and Arbitrary Orientation

Jun-Sik Kim and Seung-Woo Kim  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4327-4332 (2000)
http://dx.doi.org/10.1364/AO.39.004327


View Full Text Article

Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a general computational method of determining radiation pressure forces and torques exerted on small particles by a converging beam of light. This method, based on a ray optics model of optical trapping, allows time-series dynamic motion analysis to be performed on nonspherical objects that are initially positioned off the optical axis with arbitrary orientation. Comparison tests of computer simulation with experimental results prove that the proposed model can be used to predict complicated trapping behavior of microfabricated objects.

© 2000 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping

Citation
Jun-Sik Kim and Seung-Woo Kim, "Dynamic Motion Analysis of Optically Trapped Nonspherical Particles with Off-Axis Position and Arbitrary Orientation," Appl. Opt. 39, 4327-4332 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4327


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
  4. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
  5. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature (London) 338, 514–518 (1989).
  6. S. Sato and H. Inaba, “Second-harmonic and sum-frequency generation from optically trapped KTiOPO4 microscopic particles by use of Nd:YAG and Ti:Al2O3 lasers,” Opt. Lett. 19, 927–929 (1994).
  7. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
  8. E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72, 2951–2953 (1998).
  9. E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
  10. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
  12. G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. A 59, 6–8 (1976).
  13. W. H. Wright, G. J. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
  14. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equation,” J. Opt. Soc. Am. B 12, 1680–1686 (1995).
  15. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micro-motor,” Appl. Phys. Lett. 67, 2269–2271 (1995).
  16. R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996).
  17. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997).
  18. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
  19. R. C. Gauthier and M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998).
  20. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
  21. J. J. Craig, Introduction to Robotics (Addison-Wesley, Reading, Mass., 1989).
  22. T. R. Kane and D. A. Levinson, Dynamics: Theory and Applications (McGraw-Hill, New York, 1985).
  23. M. P. Omar, M. Mehregany, and R. L. Mullen, “Electric and fluid field analysis of side-drive micromotors,” J. Microelectromech. Syst. 1, 130–140 (1992).
  24. E. Higurashi, H. Ukita, O. Ohguchi, T. Matsuura, and K. Itao, “Fabrication and optical rotation characteristics of anisotropically shaped micro-objects made of fluorinated polyimide,” J. Jpn. Soc. Prec. Eng. 61, 1021–1025 (1995).
  25. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited