OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4338–4344

Laser diode facet modal reflectivity measurements

Kevin S. Repasky, Gregg W. Switzer, Casey W. Smith, and John L. Carlsten  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4338-4344 (2000)
http://dx.doi.org/10.1364/AO.39.004338


View Full Text Article

Enhanced HTML    Acrobat PDF (123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple and accurate method for measuring the front facet modal reflectivity of a Fabry–Perot laser diode is presented. In this method, optical feedback from an external mirror of known reflectivity, Rext, is used to alter the laser diode threshold current. The effect of the external mirror and front facet reflectivities on the threshold current then allows for a measurement of the front facet modal reflectivity of the laser diode and is theoretically and experimentally studied. This method was used to measure a facet reflectivity of R2 = 0.0151(+0.0018/-0.0032) [R2 = 0.00592(+0.00085/-0.00123)] for a commercially antireflection-coated facet of a laser diode with a center wavelength of 795 nm (935 nm). The results of the reflectivity measurements based on the threshold current as a function of the external mirror reflectivity are compared with the results of the reflectivity measurements based on modulation depth of the optical spectrum [IEEE J. Quantum Electron. QE-19, 493 (1983)].

© 2000 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(130.5990) Integrated optics : Semiconductors
(140.2020) Lasers and laser optics : Diode lasers

History
Original Manuscript: September 15, 1999
Revised Manuscript: May 18, 2000
Published: August 20, 2000

Citation
Kevin S. Repasky, Gregg W. Switzer, Casey W. Smith, and John L. Carlsten, "Laser diode facet modal reflectivity measurements," Appl. Opt. 39, 4338-4344 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Sharfin, A. Mooradian, C. M. Harding, R. G. Waters, “Lateral-mode selectivity in an external-cavity diode laser with residual facet reflectivity,” IEEE J. Quantum Electron. 23, 1756–1763 (1990). [CrossRef]
  2. B. Boggs, C. Greiner, T. Wang, H. Lin, T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23, 1906–1908 (1998). [CrossRef]
  3. D. M. Kane, A. P. Willis, “External cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995). [CrossRef] [PubMed]
  4. S. A. Merrit, C. Dauga, S. Fox, I. F. Wu, M. Dagenais, “Measurement of the facet modal reflectivity spectrum in high quality semiconductor traveling wave amplifiers,” J. Lightwave Technol. 13, 430–433 (1995). [CrossRef]
  5. B. Jaskorzyaska, J. Nilsson, L. Thylen, “Modal reflectivity of untapered, tilted-facet, and antireflection-coated diode-laser amplifiers,” J. Opt. Soc. Am. B 8, 484–493 (1991). [CrossRef]
  6. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Technol. 28, 623–645 (1996). [CrossRef]
  7. J. Landreau, H. Nakajima, “In situ reflectivity monitoring of antireflection coatings on semiconductor laser facets through facet loss induced forward voltage changes,” Appl. Phys. Lett. 56, 2376–2378 (1990). [CrossRef]
  8. I. F. Wu, I. Riant, J. M. Verdiell, M. Dagenais, “Real-time in situ monitoring of antireflection coatings for semiconductor laser amplifiers by ellipsometry,” IEEE Photon. Technol. Lett. 4, 991–993 (1992). [CrossRef]
  9. H. Ganesha Shanbhogue, C. L. Nagendra, M. N. Annapurna, S. Ajith Kumar, G. K. M. Thutupalli, “Multilayer antireflection coatings for the visible and near-infrared regions,” Appl. Opt. 36, 6339–6351 (1997). [CrossRef]
  10. C. A. Berseth, A. Schonberg, O. Dehaese, K. Leifer, A. Rudra, E. Kapon, “Experimental method for high-accuracy reflectivity-spectrum measurements,” Appl. Opt. 37, 6671–6676 (1998). [CrossRef]
  11. R. H. Clarke, “Theoretical performance of an antireflection coating for a diode laser amplifier,” Int. J. Electron. 53, 495–499 (1983). [CrossRef]
  12. I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coated superluminescent diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983). [CrossRef]
  13. M. R. Daza, A. Tarun, K. Fujita, C. Saloma, “Temporal coherence behavior of a semiconductor laser under strong optical feedback,” Opt. Commun. 161, 123–131 (1999). [CrossRef]
  14. G. P. Agrawal, ed., Semiconductor Lasers, Past, Present, and Future, AIP Series in Theoretical and Applied Optics (American Institute of Physics, Woodbury, N.Y., 1995).
  15. L. F. Stokes, “Accurate measurement of reflectivity over wavelength of a laser diode antireflection coating using an external cavity laser,” J. Lightwave Technol. 11, 1162–1167 (1993). [CrossRef]
  16. P. Hariharan, Optical Interferometry (Academic, Orlando, Fla., 1985), pp. 12, 43.
  17. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 18. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited