OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4361–4365

Single device for laser source measurements from the ultraviolet to the far infrared

Daniela Dragoman and Mircea Dragoman  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4361-4365 (2000)
http://dx.doi.org/10.1364/AO.39.004361


View Full Text Article

Enhanced HTML    Acrobat PDF (105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new device, based on an array of micromechanical cantilevers, that measures both the wavelength and the optical power of a laser source with constant efficiency over a large spectral interval from the ultraviolet to the far infrared. To measure the wavelength, the thickness of the cantilevers must vary linearly along the array. The characteristics of this device are calculated, and an example is given for the design of an array of Si cantilevers that cover the 0.33–11-µm spectral range.

© 2000 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(230.0040) Optical devices : Detectors
(230.5160) Optical devices : Photodetectors

History
Original Manuscript: September 6, 1999
Revised Manuscript: March 20, 2000
Published: August 20, 2000

Citation
Daniela Dragoman and Mircea Dragoman, "Single device for laser source measurements from the ultraviolet to the far infrared," Appl. Opt. 39, 4361-4365 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, Optical Electronics, 3rd ed., (Holt, Rinehart, and Winston, New York, 1985).
  2. D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Heidelberg, 1999). [CrossRef]
  3. D. Sengupta, V. Jandhyala, S. Kim, W. Fang, J. Malin, P. Apostolakis, K.-C. Hseih, Y.-C. Chang, S. L. Chuang, S. Bandara, S. Gunapala, M. Feng, E. Michielssen, G. Stillman, “Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering,” IEEE J. Sel. Top. Quantum Electron. 4, 746–757 (1998). [CrossRef]
  4. D. Dragoman, M. Dragoman, “Optical actuation of micromechanical tunneling structures with applications in spectrum analyzing and optical computing,” Appl. Opt. 38, 6773–6778 (1999). [CrossRef]
  5. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).
  6. S. B. Waltman, W. J. Kaiser, “An electron tunneling sensor,” Sens. Actuators 19, 201–207 (1989). [CrossRef]
  7. J. D. Patterson, “Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) Silicon,” (NASA Langley Research Center, Hampton, Va., 1997).
  8. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997). [CrossRef]
  9. M. A. McCord, A. Dana, R. F. W. Pease, “The micromechanical tunneling transistor,” J. Micromech. Microeng. 8, 209–212 (1998). [CrossRef]
  10. T. Hantschel, R. Stephenson, T. Trenkler, P. de Wolf, W. Vandervorst, “Characterization of silicon cantilevers with integrated pyramidal metal tips in atomic force microscopy,” in Design, Test, and Microfabrication of MEMS and MOEMS,” B. Courtois, S. B. Crary, W. Ehrfeld, H. Fujita, J. M. Karam, K. W. Markus, eds., Proc. SPIE3680, 994–1005 (1999). [CrossRef]
  11. M. Hoummady, H. Fujita, “Micromachines for nanoscale science and technology,” Nanotechnology 10, 29–33 (1999). [CrossRef]
  12. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995). [CrossRef]
  13. D. G. Cooper, J. L. Dexter, R. D. Esman, “Widely tunable polarization-stable fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 14–21 (1995). [CrossRef]
  14. D. S. Funk, J. G. Eden, “Glass-fiber lasers in the ultraviolet and visible,” IEEE J. Sel. Top. Quantum Electron. 1, 784–791 (1995). [CrossRef]
  15. C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995). [CrossRef]
  16. R. C. Stoneman, L. Esterowitz, “Efficient 1.94-µm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995). [CrossRef]
  17. R. C. Tobin, K. A. Peard, G. H. Bode, K. Rozsa, Z. Donko, L. Szalai, “High-gain hollow-cathode metal ion lasers for the UV and VUV,” IEEE J. Sel. Top. Quantum Electron. 1, 805–810 (1995). [CrossRef]
  18. H. Tischler, P. Delaporte, B. Fontaine, M. L. Sentis, “Vacuum ultraviolet emissions from the ionic excimer molecules (KrCs)+ and (HeAr)+ by low-energy electron-beam excitation,” IEEE J. Sel. Top. Quantum Electron. 1, 877–885 (1995). [CrossRef]
  19. D. W. Coutts, D. J. W. Brown, “Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 768–778 (1995). [CrossRef]
  20. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron. 1, 859–866 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited