OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4411–4417

Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media

Zhixiong Guo and Sunil Kumar  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4411-4417 (2000)
http://dx.doi.org/10.1364/AO.39.004411


View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.

© 2000 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(110.7050) Imaging systems : Turbid media
(140.7090) Lasers and laser optics : Ultrafast lasers
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: October 12, 1999
Revised Manuscript: May 1, 2000
Published: August 20, 2000

Citation
Zhixiong Guo and Sunil Kumar, "Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media," Appl. Opt. 39, 4411-4417 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The Delta–Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  2. W. J. Wiscombe, “The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1442 (1977). [CrossRef]
  3. H. Lee, R. O. Buckius, “Scaling anisotropic scattering in radiation heat transfer for a planar medium,” ASME J. Heat Transfer 104, 68–75 (1982). [CrossRef]
  4. T.-K. Kim, H. S. Lee, “Scaled isotropic results for two-dimensional anisotropic scattering media,” ASME J. Heat Transfer 112, 721–727 (1990). [CrossRef]
  5. B. H. J. McKellar, M. A. Box, “The scaling group of the radiative transfer for a planar medium,” J. Atmos. Sci. 38, 1063–1068 (1981). [CrossRef]
  6. Z. Guo, S. Maruyama, “Scaling anisotropic scattering in radiative transfer in three-dimensional nonhomogeneous media,” Int. Commun. Heat Mass Transfer 26, 997–1007 (1999). [CrossRef]
  7. Z. Guo, S. Maruyama, “Radiative heat transfer in inhomogeneous, nongray, and anisotropically scattering Media,” Int. J. Heat Mass Transfer 43, 2325–2336 (2000). [CrossRef]
  8. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  9. Y. Yamada, “Light–tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer, C. L. Tien, ed. (Begell House, New York, 1995), Vol. 6, pp. 1–59.
  10. M. Q. Brewster, Y. Yamada, “Optical properties of thick, turbid media from picosecond time-resolved light scattering measurements,” Int. J. Heat Mass Transfer 38, 2569–2581 (1995). [CrossRef]
  11. D. T. Deply, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef]
  12. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. J. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffusion reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992). [CrossRef] [PubMed]
  13. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  14. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989). [CrossRef] [PubMed]
  15. Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura, “Monte Carlo simulation of light transmission through living tissues,” Appl. Opt. 30, 4515–4520 (1991). [CrossRef] [PubMed]
  16. S. Kumar, K. Mitra, “Microscale aspects of thermal radiation transport and laser applications,” Adv. Heat Transfer 33, 187–294 (1998). [CrossRef]
  17. S. Kumar, K. Mitra, Y. Yamada, “Hyperbolic damped-wave models for transient light-pulse propagation in scattering media,” Appl. Opt. 35, 3372–3378 (1996). [CrossRef] [PubMed]
  18. K. Mitra, M.-S. Lai, S. Kumar, “Transient radiation transport in participating media within a rectangular enclosure,” J. Thermophys. Heat Transfer 11, 409–414 (1997). [CrossRef]
  19. K. Mitra, S. Kumar, “Development and comparison of models for light-pulse transport through scattering–absorbing media,” Appl. Opt. 38, 188–196 (1999). [CrossRef]
  20. J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997). [CrossRef] [PubMed]
  21. M. M. Krekova, G. M. Krekov, I. V. Samokhvalov, V. S. Shamanaev, “Numerical evaluation of the possibilities of remote laser sensing of fish schools,” Appl. Opt. 33, 5715–5720 (1994). [CrossRef] [PubMed]
  22. K. Mitra, J. H. Churnside, “Transient radiative transfer equation applied to oceanographic lidar,” Appl. Opt. 38, 889–895 (1999). [CrossRef]
  23. H. C. von de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  24. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, Washington, D.C., 1992).
  25. Z. Guo, S. Kumar, K.-C. San, “Multi-dimensional Monte Carlo simulation of short pulse laser radiation transport in scattering media,” J. Thermophys. Heat Transfer (to be published).
  26. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D image through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited