OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 24 — Aug. 20, 2000
  • pp: 4444–4450

Development of an automated diode-laser-based multicomponent gas sensor

Dirk Richter, David G. Lancaster, and Frank K. Tittel  »View Author Affiliations


Applied Optics, Vol. 39, Issue 24, pp. 4444-4450 (2000)
http://dx.doi.org/10.1364/AO.39.004444


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The implementation and application of a portable fiber-coupled trace-gas sensor for the detection of several trace gases, including CO2, CH4, and H2CO, are reported. This particular sensor is based on a cw fiber-amplified near-infrared (distributed Bragg reflector) diode laser and an external cavity diode laser that are frequency converted in a periodically poled lithium niobate crystal to the mid-IR spectroscopic fingerprint region (3.3–4.4 µm). A continuous absorption spectrum of CH4 and H2CO from 3.37 to 3.70 µm with a spectral resolution of 40 MHz (∼0.0013 cm-1) demonstrated the spectral performance that can be achieved by means of automated wavelength tuning and phase matching with stepper motor control. Autonomous long-term detection of ambient CO2 and CH4 over a 3- and 7-day period was also demonstrated.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: January 4, 2000
Revised Manuscript: May 24, 2000
Published: August 20, 2000

Citation
Dirk Richter, David G. Lancaster, and Frank K. Tittel, "Development of an automated diode-laser-based multicomponent gas sensor," Appl. Opt. 39, 4444-4450 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-24-4444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Midac Corporation, 17911 Fitch Ave., Irvine, Calif. 92614; http://www.midac.com .
  2. A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998). [CrossRef]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jiménez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998). [CrossRef]
  4. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998). [CrossRef]
  5. F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers,” Phys. World 12, 27–33 (1999).
  6. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999). [CrossRef]
  7. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998). [CrossRef]
  8. D. G. Lancaster, D. Richter, F. K. Tittel, “Portable fiber coupled diode laser based sensor for multiple trace gas detection,” Appl. Phys. B 69, 459–465 (1999). [CrossRef]
  9. M. Seiter, M. W. Sigrist, “On-line multicomponent trace-gas analysis with a broadly tunable pulsed difference frequency laser spectrometer,” Appl. Opt. 38, 4691–4698 (1999). [CrossRef]
  10. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef] [PubMed]
  11. R. J. Lang, D. G. Mehuys, D. F. Welch, “External cavity, continuously tunable wavelength source,” U.S. patent, 5,771,252 (23June1998).
  12. J. P. Koplow, L. Goldberg, D. A. V. Kliner, “Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side pumping,” IEEE Photon. Technol. Lett. 10, 793–795 (1998). [CrossRef]
  13. L. Goldberg, B. Cole, E. Snitzer, “V-groove side pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997). [CrossRef]
  14. K. W. Aniolek, T. J. Kulp, B. A. Richman, S. E. Bisson, P. E. Powers, R. L. Schmitt, “Trace gas detection in the mid-IR with a compact PPLN-based cavity ring-down spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 62–73 (1999). [CrossRef]
  15. P. E. Powers, T. J. Kulp, S. E. Bisson, “Continuous tuning of continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998). [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  17. National Oceanic and Atmospheric Administration (NOAA), Climate Monitoring and Diagnostics Laboratory (CMDL), Carbon Cycle Group, http://www.cmdl.noaa.gov/ccgg .
  18. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3,” Opt. Commun. 175, 461–468 (2000). [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  20. D. G. Lancaster, A. Fried, B. Wert, B. Henry, F. K. Tittel, “Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde,” Appl. Opt. 39, 4436–4443 (2000). [CrossRef]
  21. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-µm-thick GaAs films,” (Center for Nonlinear Optical Materials, Stanford University, Stanford, Calif., 1999), pp. 37–41.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited