OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 25 — Sep. 1, 2000
  • pp: 4513–4523

Imaging Performance of Telescope Mirrors for Far-Ultraviolet Astronomy

Raymond G. Ohl, Timo T. Saha, Scott D. Friedman, Robert H. Barkhouser, and H. Warren Moos  »View Author Affiliations


Applied Optics, Vol. 39, Issue 25, pp. 4513-4523 (2000)
http://dx.doi.org/10.1364/AO.39.004513


View Full Text Article

Acrobat PDF (789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe image testing, surface metrology, and modeling of telescope mirrors (0.5 m in diameter, <i>f</i>/4.3) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Laboratory image testing of wavelengths in the visible, vacuum, and midultraviolet validated a theoretical analysis by use of the Optical Surface Analysis Code (OSAC). Our modeling is based on surface metrology, including measurements of figure, midfrequency error, and microroughness. This combination of metrology, out-of-band performance testing, and modeling verified that the mirrors would meet mission requirements. We use OSAC to predict the FUSE telescope’s far-ultraviolet (90–120-nm) point-spread function and assess its effect on instrument efficiency. The mirrors have a 90% encircled energy diameter of 1.5 arc sec at λ = 100 nm. Including the effects of spacecraft pointing error, the mirrors have a predicted average slit transmission at λ = 100 nm of approximately 87% and 96% for the 1.25- and 4-arc sec-wide spectrograph slits, respectively, where the required transmissions are 50% and 95%.

© 2000 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.6770) Imaging systems : Telescopes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(220.4840) Optical design and fabrication : Testing
(260.7210) Physical optics : Ultraviolet, vacuum

Citation
Raymond G. Ohl, Timo T. Saha, Scott D. Friedman, Robert H. Barkhouser, and H. Warren Moos, "Imaging Performance of Telescope Mirrors for Far-Ultraviolet Astronomy," Appl. Opt. 39, 4513-4523 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-25-4513


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. W. Moos et al., “Overview of the Far Ultraviolet Spectroscopic Explorer mission,” Astrophys. J. (in press).
  2. D. J. Sahnow, S. D. Friedman, H. W. Moos, J. C. Green, and O. H. Siegmund, “Preliminary performance estimates for the Far Ultraviolet Spectroscopic Explorer (FUSE),” in Space Telescopes and Instruments V, P. Y. Bely and J. B. Breckinridge, eds., Proc. SPIE 3356, 552–560 (1998).
  3. D. J. Sahnow et al., “On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite,” Astrophys. J. (in press).
  4. M. J. Kennedy, S. D. Friedman, R. H. Barkhouser, J. Hampton, and P. Nikulla, “Design of the Far Ultraviolet Spectroscopic Explorer mirror assemblies,” in Space Telescopes and Instruments IV, P. Y. Bely and J. B. Breckinridge, eds., Proc. SPIE 2807, 172–183 (1996).
  5. W. R. Hunter, J. F. Osantowski, and G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971).
  6. R. A. M. Keski-Kuha, J. F. Osantowski, H. Herzig, J. S. Gum, and A. R. Toft, “Normal incidence reflectance of ion beam deposited SiC films in the EUV,” Appl. Opt. 27, 2815–2816 (1988).
  7. R. A. M. Keski-Kuha, J. I. Larruquert, J. S. Gum, and C. M. Fleetwood, “Optical coatings and materials for ultraviolet space astronomy,” in Ultraviolet-Optical Space Astronomy Beyond HST, J. A. Morse, J. M. Shull, and A. L. Kinney, eds., Astronomical Society of the Pacific Conference Series 164, 406–419 (1999).
  8. FUSE Instrument and Science Operations Team, “FUSE instrument requirements document,” FUSE-JHU-0004, Rev. B (Johns Hopkins University, Baltimore, Md., 1996).
  9. Silicon Valley Group, Inc., Tinsley Division, Tinsley Laboratories, 3900 Lakeside Drive, Richmond, Calif. 94806.
  10. R. G. Ohl, R. H. Barkhouser, M. J. Kennedy, and S. D. Friedman, “Assembly and test-induced distortions of the FUSE mirrors—lessons learned,” in Space Telescopes and Instruments V, P. Y. Bely and J. B. Breckinridge, eds., Proc. SPIE 3356, 854–865 (1998).
  11. R. J. Noll, P. Glenn, and J. F. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials II, S. Musikant, ed., Proc. SPIE 62, 78–82 (1983).
  12. T. T. Saha, D. B. Leviton, and P. Glenn, “Performance of ion-figured silicon carbide SUMER telescope mirror in the vacuum ultraviolet,” Appl. Opt. 35, 1742–1750 (1996).
  13. R. G. Ohl, S. D. Friedman, T. T. Saha, R. H. Barkhouser, and H. W. Moos, “Optical testing of the Far Ultraviolet Spectroscopic Explorer primary mirrors and predicted on-orbit performance,” in EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund and K. A. Flanagan, eds., Proc. SPIE 3765, 482–494 (1999).
  14. J. E. Harvey and A. Kotha, “Scattering effects from residual optical fabrication errors,” in International Conference on Optical Fabrication and Testing, T. Kasai, ed., Proc. SPIE 2576, 155–174 (1995).
  15. J. C. Stover, Optical Scattering, Measurement and Analysis, Vol. PM24 of SPIE Monograph Series (SPIE Press, Bellingham, Wash., 1995).
  16. J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), pp. 62–86.
  17. P. Glenn, “Metrology data processor (metdat),” final report, NASA contract S-73672-E (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  18. J. E. Harvey, “Final report for FUSE telescope performance predictions,” consulting agreement under NASA contract NAS5–32985 (Johns Hopkins University, Baltimore, Md., 1996).
  19. R. H. Barkhouser and R. G. Ohl, “Interferometric alignment and figure testing of large (0.5 m) off-axis parabolic mirrors in a challenging cleanroom environment,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE 3782, 601–614 (1999).
  20. P. Glenn, “Lambda-over-thousand metrology results for steep spheres using a curvature profiling technique,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE 1531, 54–61 (1991).
  21. R. A. M. Keski-Kuha, NASA Goddard Space Flight Center, Greenbelt, Md. (personal communication, 2000).
  22. R. A. M. Keski-Kuha, G. M. Blumenstock, C. M. Fleetwood, and D.-R. Schmitt, “Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings,” Appl. Opt. 37, 8038–8042 (1998).
  23. J. F. Osantowski, R. A. M. Keski-Kuha, H. Herzig, A. R. Toft, J. S. Gum, and C. M. Fleetwood, “Optical coating technology for the EUV,” Adv. Space Res. 11, 185–201 (1991).
  24. S. J. Conard, R. H. Barkhouser (Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218), S. D. Friedman, J. W. Kruk, H. W. Moos, R. G. Ohl, and D. J. Sahnow, are preparing a manuscript to be called “The Far Ultraviolet Spectroscopic Explorer optical system: lessons learned.”
  25. A ray trace calculation assuming a perfectly parabolic mirror with this offset from nominal focus yields a rms spot radius of 0.56 μm.
  26. WYKO Model 400 interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.
  27. WYKO Model TOPO 3-D interferometer, Veeco Corporation (formerly WYKO Corporation), 2650 East Elvira Road, Tucson, Ariz. 85706.
  28. Nu-Tek Precision Optical Corporation, 1202 Technology Drive, Suites L-P, Aberdeen, Md. 21001.
  29. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.–Phy. Klasse 69, 262–277 (1917).
  30. S. W. Rowland, “Computer implementation of image reconstruction formulas,” in Image Reconstruction from Projections—Implementation and Applications, Vol. 32 of Topics in Applied Physics, G. T. Herman, ed. (Springer-Verlag, New York, 1979), pp. 9–79.
  31. R. N. Bracewell, Two-Dimensional Imaging (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 505–544.
  32. R. J. Noll and P. Glenn, “Mirror surface autocovariance functions and their associated visible scattering,” Appl. Opt. 21, 1824–1838 (1982).
  33. A. Slomba, R. Babish, and P. Glenn, “Mirror surface metrology and polishing for AXAF/TMA,” in X-Ray Instrumentation in Astronomy, J. L. Culhane, ed., Proc. SPIE 597, 40–54 (1985).
  34. T. T. Saha, ed., Optical Surface Analysis Code (OSAC), User’s Manual (NASA Goddard Space Flight Center, Greenbelt, Md., 1993), pp. 5–74–5–76.
  35. S. J. Conard, K. W. Redman, R. H. Barkhouser, and J. A. Johnson, “Optical alignment of the Far Ultraviolet Spectroscopic Explorer,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund and K. A. Flanagan, eds., Proc. SPIE 3765, 618–629 (1999).
  36. A. N. Cha, D. J. Sahnow, and H. W. Moos, “Processing and interpretation of pre-flight FUSE spectra,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund and K. A. Flanagan, eds., Proc. SPIE 3765, 495–505 (1999).
  37. P. Glenn, “Space telescope performance prediction using the optical surface analysis code (OSAC),” Opt. Eng. 25, 1026–1033 (1986).
  38. T. T. Saha, D. A. Thomas, and J. F. Osantowski, “OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope,” in Grazing Incidence Optics, J. F. Osantowski and L. P. Van Speybroeck, eds., Proc. SPIE 640, 79–84 (1986).
  39. M. D. Freeman, J. P. Hughes, L. P. Van Speybroeck, J. W. Bilbro, and M. C. Weisskopf, “Image analysis of the AXAF VETA-I x-ray mirror,” in Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, R. B. Hoover and A. B. Walker, Jr., eds., Proc. SPIE 1742, 136–151 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited