OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 25 — Sep. 1, 2000
  • pp: 4569–4581

Optical frequency-domain reflectometry for microbend sensor demodulation

S. Gareth Pierce, Alistair MacLean, and Brian Culshaw  »View Author Affiliations


Applied Optics, Vol. 39, Issue 25, pp. 4569-4581 (2000)
http://dx.doi.org/10.1364/AO.39.004569


View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The operation of an incoherent optical frequency-domain reflectometer for monitoring the continuous Rayleigh backscatter in a multimode optical fiber is presented. A simple but effective model to predict the value of beat frequencies arising in the system when excited by a linearly frequency-swept amplitude modulation has been developed. We have verified the model’s predictions by experimental measurement of beat frequencies and modulation depth indices of different lengths of standard graded-index multimode optical fiber. Demonstration of the system sensitivity to the detection of microbending loss is then discussed. In particular the detection of loss in a hydrogel-based water-sensing cable allows an alternative interrogation to conventional optical time-domain reflectometry techniques to be implemented. We demonstrate that the incoherent optical frequency-domain reflectometer is capable of detecting and locating sections of increased loss in a multimode optical fiber, and we discuss the fundamental limits on spatial resolution and dynamic range.

© 2000 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5870) Scattering : Scattering, Rayleigh

History
Original Manuscript: March 2, 2000
Revised Manuscript: June 13, 2000
Published: September 1, 2000

Citation
S. Gareth Pierce, Alistair MacLean, and Brian Culshaw, "Optical frequency-domain reflectometry for microbend sensor demodulation," Appl. Opt. 39, 4569-4581 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-25-4569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibres,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 9–36.
  2. G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 139–156.
  3. T. Horiguchi, A. Rogers, W. C. Michie, G. Stewart, B. Culshaw, “Distributed sensors: recent developments,” in Optical Fibre Sensors: Applications, Analysis and Future Trends, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1997), Vol. 4, pp. 309–368.
  4. A. MacLean, W. C. Michie, S. G. Pierce, G. Thursby, B. Culshaw, C. Moran, N. B. Graham, “Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value,” in Smart Structures and Materials: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, Proc. SPIE3330, 134–144 (1998). [CrossRef]
  5. J. P. Dakin, “Distributed optical fibre sensor systems,” in Optical Fibre Sensors: Systems and Applications, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1989), Vol. 2, pp. 575–598.
  6. A. D. Kersey, “Distributed and multiplexed fibre optic sensing,” in Fibre Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 325–368.
  7. B. Garside, “Advances in high-speed OTDR detection techniques,” in Optical Fibre Sensors: Components and Subsystems, B. Culshaw, J. P. Dakin, eds. (Artech House, Boston, Mass., 1996), Vol. 3, pp. 145–189.
  8. W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry distributed fibre optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988). [CrossRef]
  9. W. Eickhoff, R. Ulrich, “Optical frequency domain reflectometry in single mode fibre,” Appl. Phys. Lett. 39, 693–695 (1981). [CrossRef]
  10. D. Uttamchandani, B. Culshaw, “Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. LT3, 971–976 (1985).
  11. S. A. Kingsley, D. E. N. Davies, “OFDR diagnostics for fibre and integrated-optic systems,” Electron. Lett. 21, 434–435 (1985). [CrossRef]
  12. R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994). [CrossRef]
  13. G. Mussi, N. Gisin, R. Passy, J. P. von der Weid, “-152.5 dB sensitivity high dynamic range optical frequency domain reflectometry,” Electron. Lett. 32, 926–927 (1996). [CrossRef]
  14. J. P. von der Weid, R. Passy, G. Mussi, N. Gisin, “On the characterisation of optical fibre network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15, 1131–1141 (1997). [CrossRef]
  15. N. Tan-no, T. Ichimura, T. Funaba, N. Anndo, Y. Odagiri, “Optical multimode frequency-domain reflectometer,” Opt. Lett. 19, 587–589 (1994). [CrossRef] [PubMed]
  16. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial resolution improvement in long range coherent optical frequency domain reflectometry by frequency sweep linearisation,” Electron. Lett. 33, 408–410 (1997). [CrossRef]
  17. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Coherent optical frequency domain reflectometry using phase decorrelated reflected and reference waves,” J. Lightwave Technol. 15, 1102–1109 (1997). [CrossRef]
  18. R. Rathod, R. D. Pechstedt, D. A. Jackson, D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994). [CrossRef] [PubMed]
  19. R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt. 20, 1840–1844 (1981). [CrossRef] [PubMed]
  20. S. Venkatesh, D. W. Dolfi, “Incoherent frequency modulated cw optical reflectometry with centimeter resolution,” Appl. Opt. 29, 1323–1326 (1990). [CrossRef] [PubMed]
  21. R. I. MacDonald, B. E. Swekla, “Frequency domain optical reflectometer using a GaAs optoelectronic mixer,” Appl. Opt. 29, 4578–4582 (1990). [CrossRef] [PubMed]
  22. R. L. Jungerman, D. W. Dolfi, “Frequency domain optical network analysis using intergated optics,” IEEE J. Quantum Electron. 27, 580–587 (1991). [CrossRef]
  23. N. A. Peppas, Polymers, Vol. 2 of Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, Fla., 1987), pp. 96–111.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited