OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 25 — Sep. 1, 2000
  • pp: 4598–4606

Spatial Versus Temporal Phase Shifting in Electronic Speckle-Pattern Interferometry: Noise Comparison in Phase Maps

Jan Burke and Heinz Helmers  »View Author Affiliations


Applied Optics, Vol. 39, Issue 25, pp. 4598-4606 (2000)
http://dx.doi.org/10.1364/AO.39.004598


View Full Text Article

Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temporal and spatial phase shifting in electronic speckle-pattern interferometry are compared quantitatively with respect to the quality of the resultant deformation phase maps. On the basis of an analysis of the noise in sawtooth fringes a figure of merit is defined and measured for various in-plane and out-of-plane sensitive electronic speckle-pattern interferometry configurations. Varying quantities like the object-illuminating intensity, the beam ratio, the speckle size and shape, and the fringe density allows characteristic behaviors of both phase-shifting methods to be explored.

© 2000 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

Citation
Jan Burke and Heinz Helmers, "Spatial Versus Temporal Phase Shifting in Electronic Speckle-Pattern Interferometry: Noise Comparison in Phase Maps," Appl. Opt. 39, 4598-4606 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-25-4598


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Mendoza Santoyo, D. Kerr, and J. D. Tyrer, “Interferometric fringe analysis using a single phase step technique”, Appl. Opt. 27, 4362–4364 (1988).
  2. D. Colucci and P. Wizinowich, “Millisecond phase acquisition at video rates,” Appl. Opt. 31, 5919–5925 (1992).
  3. M. Kujawińska and D. W. Robinson, “Multichannel phase-stepped holographic interferometry,” Appl. Opt. 27, 312–320 (1988).
  4. H. Steinbichler and J. Gutjahr, “Verfahren zur direkten Phasenmessung von Strahlung, insbesondere Lichtstrahlung, und Vorrichtung zur Durchführung dieses Verfahrens,” Offenlegungsschrift Deutsches Patentamt DE 3930632 A1 (14 March 1991).
  5. D. C. Williams, N. S. Nassar, J. E. Banyard, and M. S. Virdee, “Digital phase-step interferometry: a simplified approach,” Opt. Laser Technol. 23, 147–150 (1991).
  6. T. Bothe, J. Burke, and H. Helmers, “Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase-reconstruction errors,” Appl. Opt. 36, 5310–5316 (1997).
  7. M. Lehmann, “Phase-shifting speckle interferometry with unresolved speckles: a theoretical investigation,” Opt. Commun. 128, 325–340 (1996).
  8. J. Schwider, O. Falkenstörfer, H. Schreiber, A. Zöller, and N. Streibl, “New compensating four-phase algorithm for phase-shift interferometry,” Opt. Eng. 32, 1883–1885 (1993).
  9. J. Burke, H. Helmers, C. Kunze, and V. Wilkens, “Speckle intensity and phase gradients: influence on fringe quality in spatial phase-shifting ESPI systems,” Opt. Commun. 151, 144–152 (1998).
  10. Y. Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24, 3049–3052 (1985).
  11. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilising speckle effect,” J. Phys. E 3, 214–218 (1970).
  12. R. S. Sirohi, J. Burke, H. Helmers, and K. Hinsch, “Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI),” Appl. Opt. 36, 5787–5791 (1997).
  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), p. 305.
  14. G. Å. Slettemoen and J. C. Wyant, “Maximal fraction of acceptable measurements in phase-shifting speckle interferometry: a theoretical study,” J. Opt. Soc. Am. A 3, 210–214 (1986).
  15. M. Lehmann, “Optimization of wave intensities in phase-shifting speckle interferometry,” Opt. Commun. 118, 199–206 (1995).
  16. H. A. Vrooman and A. A. de Maas, “Image-processing algorithms for the analysis of phase-shifted speckle interference patterns,” Appl. Opt. 30, 1636–1641 (1991).
  17. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 38–39.
  18. S. Donati and G. Martini, “Speckle-pattern intensity and phase: second-order conditional statistics,” J. Opt. Soc. Am. 69, 1690–1694 (1979).
  19. J. M. Huntley, “Random phase measurement errors in DSPI,” Opt. Laser Eng. 26, 131–150 (1997).
  20. K. G. Larkin and B. F. Oreb, “Propagation of errors in different phase-shifting algorithms: a special property of the arctangent function,” in Interferometry: Techniques and Analysis, B. M. Brown, O. Y. Kwon, M. Kujawińska, and G. T. Reid, eds., Proc. SPIE 1755, 219–227 (1992).
  21. N. Shvartsman and I. Freund, “Speckle spots ride phase saddles sidesaddle,” Opt. Commun. 117, 228–234 (1995), and references therein.
  22. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990).
  23. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  24. A. E. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), p. 210.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited