OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 25 — Sep. 1, 2000
  • pp: 4690–4697

In situ Measurement on Ultraviolet Dielectric Components by a Pulsed Top-Hat Beam Thermal Lens

Bincheng Li, Sven Martin, and Eberhard Welsch  »View Author Affiliations


Applied Optics, Vol. 39, Issue 25, pp. 4690-4697 (2000)
http://dx.doi.org/10.1364/AO.39.004690


View Full Text Article

Acrobat PDF (779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple and sensitive mode-mismatched thermal lens (TL) technique with a pulsed top-hat beam excitation and a near-field detection scheme is developed to measure in situ the thermoelastic and the thermooptical responses of ultraviolet (UV) dielectric coatings as well as bulk materials under excimer laser (193- or 248-nm) irradiations. Owing to its high sensitivity, the TL technique can be used for measurements at fluences far below the laser-induced damage threshold (LIDT). We report on the measurement of both linear and nonlinear absorption of the UV dielectric coatings and bulk materials as well as the investigation of time-resolved predamage phenomena, such as laser conditioning of highly reflective dielectric coatings and irradiation-induced changes of a coating’s various properties. The pulsed TL technique is also a convenient technique for accurate measurement of the LIDT of dielectric coatings and for distinguishing different damage mechanisms: thermal-stress-induced damage or melting-induced damage.

© 2000 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3440) Lasers and laser optics : Laser-induced breakdown
(310.6870) Thin films : Thin films, other properties

Citation
Bincheng Li, Sven Martin, and Eberhard Welsch, "In situ Measurement on Ultraviolet Dielectric Components by a Pulsed Top-Hat Beam Thermal Lens," Appl. Opt. 39, 4690-4697 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-25-4690


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Sauerbrey, Electrooptics Handbook, R. W. Waynant and M. N. Ediger, eds., Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1994), Chap. 3.
  2. J. S. Horwitz, H.-U. Krebs, K. Murakami, and M. Stuke, eds., Proceedings of the Fifth International Conference on Laser Ablation, Appl. Phys. A Suppl. 69 (1999).
  3. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
  4. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, and M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
  5. J. A. Sell, D. M. Heffelfinger, P. Ventzek, and R. M. Gilgenbach, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
  6. E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schäfer, and N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
  7. B. Li and E. Welsch, “Probe-beam diffraction in a pulsed top-hat beam thermal lens with a mode-mismatched configuration,” Appl. Opt. 38, 5241–5249 (1999).
  8. B. Li, S. Martin, and E. Welsch, “Pulsed top-hat beam thermal-lens measurement for ultraviolet dielectric coatings,” Opt. Lett. 24, 1398–1400 (1999).
  9. P. K. Kuo and M. Munidasa, “Single-beam interferometry of a thermal bump,” Appl. Opt. 29, 5326–5331 (1990).
  10. Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterization,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 294–303 (1996).
  11. R. Chow, J. R. Taylor, and Z. L. Wu, “Absorption behavior of optical coatings for high-average-power laser applications,” Appl. Opt. 39, 650–658 (2000).
  12. B. Li and E. Welsch, “Configuration optimization and sensitivity comparison among thermal lens, photothermal deflection and interference detection techniques,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 594–603 (1999).
  13. B. C. Li, “Three-dimensional theory of pulsed photothermal deformation,” J. Appl. Phys. 68, 482–487 (1990).
  14. S. V. Buntsents, S. G. Dmitriev, and O. G. Shagimuratov, “Instantaneous profiles of quasistatic deformations and displacements of solid surfaces during local laser irradiation,” Phys. Solid State 38, 552–557 (1996).
  15. S. E. Bialkowski and A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997).
  16. B. Li, S. Martin, and E. Welsch, “Thermoelastic influence of substrate on damage threshold of ultraviolet dielectric coatings,” in Laser-Induced Damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3902, 145–153 (2000).
  17. E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
  18. R. K. Brimacombe, R. S. Taylar, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excemer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
  19. K. Mann, O. Apel, and E. Eva, “Characterization of absorption and scatter losses on optical components for ArF excimer lasers,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 614–624 (1999).
  20. O. Apel and K. Mann, “Scatter and absorption losses from DUV optics: a comparative study,” in Laser-Induced Damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3902, 460–469 (2000).
  21. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35, 5613–5619 (1996).
  22. J. Heber, R. Thielsch, H. Blaschke, N. Kaiser, U. Leinhos, and A. Görtler, “Microstructure and radiation interactions of optical interference coatings for 193 nm applications,” in Advances in Optical Interference Coatings, C. Amra and A. Macloed, eds., Proc. SPIE 3738, 159–165 (1999).
  23. J. Heber, R. Thielsch, H. Blaschke, N. Kaiser, U. Leinhos, and A. Görtler, “Changes in optical interference coatings exposed to 193-nm excimer laser radiation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 83–95 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited