OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 25 — Sep. 1, 2000
  • pp: 4733–4745

Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance

Tuan H. Pham, Thorsten Spott, Lars O. Svaasand, and Bruce J. Tromberg  »View Author Affiliations


Applied Optics, Vol. 39, Issue 25, pp. 4733-4745 (2000)
http://dx.doi.org/10.1364/AO.39.004733


View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (μ a ) and reduced scattering (μ s ′) parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of ±9% and ±5% for μ a and μ s ′, respectively. The accuracy of upper-layer thickness (l) estimation is as good as ±6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (μ a and μ s ′ of upper and lower layers and thickness l) must be deduced.

© 2000 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

History
Original Manuscript: December 10, 1999
Revised Manuscript: May 19, 2000
Published: September 1, 2000

Citation
Tuan H. Pham, Thorsten Spott, Lars O. Svaasand, and Bruce J. Tromberg, "Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance," Appl. Opt. 39, 4733-4745 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-25-4733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  2. A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol. 75, 1884–1889 (1993). [PubMed]
  3. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  4. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. H. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Series B 352, 661–668 (1997). [CrossRef]
  5. M. Cope, “The development of a near infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (University College London, London, UK, 1991), pp. 56–78.
  6. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995). [CrossRef]
  7. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995). [CrossRef] [PubMed]
  8. R. A. de Blasi, R. Sfareni, B. Pietranico, A. M. Mega, M. Ferrari, “Non invasive measurement of brachioradial muscle VO2-blood flow relationship during graded isometric exercise,” Adv. Exp. Med. Biol. 388, 293–298 (1996). [CrossRef] [PubMed]
  9. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells,” Cancer 84, 366–374 (1998). [CrossRef]
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), pp. 175–190. [CrossRef]
  11. K. Furutsu, “Diffusion equation derived from space-time transport equation,” J. Opt. Soc. Am. 70, 360–366 (1980). [CrossRef]
  12. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2743 (1994). [CrossRef]
  13. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994). [CrossRef]
  14. T. J. Farrell, M. S. Patterson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  15. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, E. Graton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998). [CrossRef]
  16. A. H. Hielscher, H. L. Liu, B. Chance, F. K. Tittel, S. L. Jacques, “Time-resolved photon emission from layered turbid media,” Appl. Opt. 35, 719–728 (1996). [CrossRef] [PubMed]
  17. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  18. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, J. S. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Exp. 3, 212–218 (1998). [CrossRef]
  19. M. J. Witjes, A. J. Mank, O. C. Speelman, R. Posthumus, C. A. Nooren, J. M. Nauta, J. L. Roodenburg, W. M. Star, “Distribution of aluminum phthalocyanine disulfonate in an oral squamous cell carcinoma model. In vivo fluorescence imaging compared with ex vivo analytical methods,” Photochem. Photobiol. 65, 685–693 (1997). [PubMed]
  20. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998). [CrossRef] [PubMed]
  21. J. M. Schmitt, G. Z. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  22. I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium. A diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992). [CrossRef]
  23. L. O. Svaasand, T. Spott, J. B. Fishkin, T. H. Pham, B. J. Tromberg, M. W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999). [CrossRef] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  25. J. B. Fishkin, P. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995). [CrossRef] [PubMed]
  26. T. H. Pham, O. Coquoz, J. B. Fishkin, E. A. Anderson, B. J. Tromberg, “A broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000). [CrossRef]
  27. W. H. Press, W. T. Vetterling, S. A. Teukolsky, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, N.Y., 1992), pp. 408–412.
  28. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comp. J. (Cambridge) 7, 308–313 (1964).
  29. The MathWorks, Inc., Matlab Reference Guide (The MathWorks, Inc., Natick, Mass. 01760, 1992), pp. 208–210.
  30. Ref. 27, pp. 689–699.
  31. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, New York, 1990), pp. 43–60. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited