OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 26 — Sep. 10, 2000
  • pp: 4761–4769

Modeling scintillation from an aperiodic Kolmogorov phase screen

Rachel A. Johnston and Richard G. Lane  »View Author Affiliations

Applied Optics, Vol. 39, Issue 26, pp. 4761-4769 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a technique for the accurate modeling and simulation of scintillation patterns that are due to Kolmogorov statistics without assuming periodic boundary conditions. We show how the more physically justifiable assumption of smoothness results in a propagation kernel of finite extent. This allows the phase screen dimensions for an accurate simulation to be determined, and truncation can then be used to eliminate the unwanted spectral leakage and diffraction effects usually inherent in the use of finite apertures. A detailed outline of the proposed technique and comparison of simulations with analytic results are presented.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(030.6600) Coherence and statistical optics : Statistical optics
(030.7060) Coherence and statistical optics : Turbulence

Original Manuscript: November 4, 1999
Revised Manuscript: June 1, 2000
Published: September 10, 2000

Rachel A. Johnston and Richard G. Lane, "Modeling scintillation from an aperiodic Kolmogorov phase screen," Appl. Opt. 39, 4761-4769 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics (Elsevier, Amsterdam, 1981), Vol. 19, pp. 281–376. [CrossRef]
  2. V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalized scidar technique,” Astron. Astrophys. Suppl. 130, 141–155 (1998). [CrossRef]
  3. J. M. Martin, S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation in 3D-random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  4. J. M. Martin, S. M. Flatte, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  5. S. M. Flatte, G.-Y. Wang, J. Martin, “Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,” J. Opt. Soc. Am. A 10, 2363–2370 (1993). [CrossRef]
  6. G. Vdovin, LightPipes: Beam Propagation Toolbox, Version 1.1 (Electronic Instrumentation Laboratory, Delft University of Technology, 1993–1996).
  7. W. A. Coles, J. P. Filice, R. G. Frelich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  8. M. J. Adcock, N. Jones, “Atmospheric propagation simulation,” http://op.ph.ic.ac.uk/users/miles/see/see.html .
  9. J. A. Rubio, A. Belmonte, A. Comeron, “Numerical simulation of long-path spherical wave propagation in three-dimensional random media,” Opt. Eng. 38, 1462–1469 (1999). [CrossRef]
  10. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  11. A. Glindemann, R. G. Lane, J. C. Dainty, “Simulation of time evolving speckle using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993). [CrossRef]
  12. J. Vernin, F. Roddier, “Experimental determination of two dimensional spatiotemporal power spectra of stellar light scintillation—evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973). [CrossRef]
  13. C. M. Harding, R. A. Johnston, R. G. Lane, “Fast simulation of a Kolmogorov phase screen,” Appl. Opt. 38, 2161–2170 (1999). [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  15. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  16. P. Horowtiz, “Asymptotic theory of unstable resonator modes,” J. Opt. Soc. Am. 63, 1528–1543 (1973). [CrossRef]
  17. C. Schwartz, G. Baum, E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994). [CrossRef]
  18. C. A. Davis, D. L. Walters, “Atmospheric inner-scale effects on normalized irradiance variance,” Appl. Opt. 33, 8406–8411 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited