OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 4869–4878

Modeling of the radiative process in an atmospheric general circulation model

Teruyuki Nakajima, Masahito Tsukamoto, Yoko Tsushima, Atusi Numaguti, and Toshiyoshi Kimura  »View Author Affiliations


Applied Optics, Vol. 39, Issue 27, pp. 4869-4878 (2000)
http://dx.doi.org/10.1364/AO.39.004869


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new radiation scheme has been developed for dynamic general-circulation modeling. An automatic determination of k-distribution parameters and a treatment of solar–terrestrial radiation interacting with gaseous and particulate matter are incorporated into the scheme by a technique that combines discrete ordinate and matrix operator methods. An accelerated scheme for cloud overlap is developed and tested. The resultant accuracy of the scheme is ±0.5 K/day to a 70-km height in clear sky better than that of the line-by-line calculation method.

© 2000 Optical Society of America

OCIS Codes
(010.3920) Atmospheric and oceanic optics : Meteorology
(030.5620) Coherence and statistical optics : Radiative transfer
(290.1090) Scattering : Aerosol and cloud effects
(300.1030) Spectroscopy : Absorption

History
Original Manuscript: July 23, 1999
Revised Manuscript: April 11, 2000
Published: September 20, 2000

Citation
Teruyuki Nakajima, Masahito Tsukamoto, Yoko Tsushima, Atusi Numaguti, and Toshiyoshi Kimura, "Modeling of the radiative process in an atmospheric general circulation model," Appl. Opt. 39, 4869-4878 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-27-4869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lacis, W. C. Wang, J. Hansen, “Correlated k-distribution method for radiative transfer in climate models: application to the effect of cirrus clouds on climate,” NASA Conf. Publ. 2076, 309–314 (1979).
  2. M.-D. Chou, “A solar radiation model for use in climate studies,” J. Atmos. Sci. 49, 762–772 (1992). [CrossRef]
  3. Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139–2156 (1992). [CrossRef]
  4. K. Shibata, T. Aoki, “An infrared-radiative scheme for numerical models of weather and climate,” J. Geophys. Res. 94, 14,923–14,943 (1992). [CrossRef]
  5. T. Nakajima, M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986). [CrossRef]
  6. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  7. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  8. G. N. Plass, G. W. Kattawar, F. E. Catchings, “Matrix operator theory of radiative transfer. 1. Rayleigh scattering,” Appl. Opt. 12, 314–329 (1973). [CrossRef] [PubMed]
  9. R. M. Goody, Y. L. Yung, Atmospheric Radiation, Theoretical Basis, 2nd ed. (Oxford U. Press, Oxford, 1989).
  10. G.-Y. Shi, “An accurate calculation and representation of the infrared transmission function of atmospheric constituents,” Ph.D. dissertation (Tohoku University, Sendai, Japan, 1981).
  11. E. Raschke, U. Stucke, “Approximations of band transmission functions by finite sums of exponentials,” Contrib. Atmos. Phys. 46, 203–212 (1973).
  12. A. Uchiyama, “Line-by-line computation of the atmospheric absorption spectrum using the decomposed Voigt line shape,” J. Quant. Spectrosc. Radiat. Transfer 47, 521–532 (1992). [CrossRef]
  13. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran7,” (U. S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  14. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran6,” (U. S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  15. S. A. Clough, F. S. Kneizys, R. Davies, R. Gamache, R. H. Tipping, “Theoretical line shape for H2O vapor: application to the continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980).
  16. G.-Y. Shi, “Radiative forcing and greenhouse effect due to atmospheric trace gases,” Sci. Sin. Ser. B 35, 217–229 (1992).
  17. J.-J. Morcrette, Y. Fouquart, “The overlapping of cloud layers in shortwave radiation parameterizations,” J. Atmos. Sci. 43, 321–328 (1986). [CrossRef]
  18. R. E. Payne, “Albedo of the sea surface,” J. Atmos. Sci. 29, 959–970 (1972). [CrossRef]
  19. T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992). [CrossRef] [PubMed]
  20. Harshvardhan, M. D. King, “Comparative accuracy of diffuse radiative properties computed using the selected multiple scattering approximation,” J. Atmos. Sci. 50, 247–259 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited