OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 4946–4953

Design of compact optical bends with a trench by use of finite-element and beam-propagation methods

Muttukrishnan Rajarajan, Salah S. A. Obayya, B. M. Azizur Rahman, Kenneth T. V. Grattan, and Hamdi A. El-Mikati  »View Author Affiliations


Applied Optics, Vol. 39, Issue 27, pp. 4946-4953 (2000)
http://dx.doi.org/10.1364/AO.39.004946


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address various approaches to the reduction of optical bending loss in photonic integrated circuits. Different methods, such as offsetting of waveguides and incorporation of the effect of an isolation trench on reduction of radiation loss, are demonstrated. A combination of the vectorial finite-element and the least-squares boundary residual methods is used to calculate transition losses and the required offset for their minimization. The semivectorial finite-element-based beam-propagation method is employed to calculate radiation loss. These vectorial approaches are also used to investigate several important properties, such as effects that are due to the sidewall slopes, rib heights, rib widths, and trench location, to optimize bend designs.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0250) Integrated optics : Optoelectronics
(130.2790) Integrated optics : Guided waves
(250.5300) Optoelectronics : Photonic integrated circuits

History
Original Manuscript: March 16, 2000
Revised Manuscript: June 16, 2000
Published: September 20, 2000

Citation
Muttukrishnan Rajarajan, Salah S. A. Obayya, B. M. Azizur Rahman, Kenneth T. V. Grattan, and Hamdi A. El-Mikati, "Design of compact optical bends with a trench by use of finite-element and beam-propagation methods," Appl. Opt. 39, 4946-4953 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-27-4946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Zirngibl, C. H. Joyner, L. W. Stulz, T. Gaiffe, C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexers on InP,” Electron. Lett. 29, 201–202 (1993). [CrossRef]
  2. T. Krauss, P. J. R. Laybourn, J. Roberts, “CW operation of semiconductor ring lasers,” Electron. Lett. 26, 2095–2096 (1990). [CrossRef]
  3. R. R. Hayes, D. Yap, “GaAs spiral optical waveguides for delay-line applications,” J. Lightwave Technol. 11, 523–527 (1993). [CrossRef]
  4. W. W. Lui, T. Hirono, K. Yokoyama, W. P. Huang, “Polarization rotation in semiconductor bending waveguides: a coupled-mode theory formulation,” J. Lightwave Technol. 16, 929–936 (1998). [CrossRef]
  5. M. W. Austin, P. G. Flavin, “Small-radii curved rib waveguides in GaAs/GaAlAs using electron-beam lithography,” J. Lightwave Technol. LT-1, 236–240 (1983). [CrossRef]
  6. C. Seo, J. C. Chen, “Low transition losses in bent rib waveguide,” J. Lightwave Technol. 14, 2255–2259 (1992).
  7. J. Yamauchi, M. Ikegaya, H. Nakano, “Analysis of bent asymmetric slab waveguides by the beam propagation method,” Opt. Commun. 79, 291–294 (1990). [CrossRef]
  8. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]
  9. M. Heiblum, J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75–83 (1975). [CrossRef]
  10. E. C. M. Pennings, R. J. Deri, “Simple method for estimating usable bend radii of deeply etched optical rib waveguides,” Electron. Lett. 27, 1532–1534 (1990). [CrossRef]
  11. J. S. Gu, P. A. Besse, H. Melchior, “Method of lines for the analysis of the propagation characteristics of curved optical rib waveguides,” IEEE J. Quantum Electron. 27, 531–537 (1991). [CrossRef]
  12. S. Kim, A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite difference method,” J. Lightwave Technol. 14, 2085–2092 (1996). [CrossRef]
  13. T. Yamamoto, M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by finite-element method,” J. Lightwave Technol. 11, 1579–1583 (1993). [CrossRef]
  14. S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikathi, “New full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Lightwave Technol. 18, 409–415 (2000). [CrossRef]
  15. B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. LT-2, 682–688 (1984). [CrossRef]
  16. B. M. A. Rahman, J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. LT-6, 52–57 (1988). [CrossRef]
  17. H. E. Hernandez-Figueroa, F. A. Fernandez, J. B. Davies, “Finite element approach for the modal analysis of open-boundary waveguides,” Electron. Lett. 30, 2031–2032 (1994). [CrossRef]
  18. M. Rajarajan, B. M. A. Rahman, T. Wongcharoen, K. T. V. Grattan, “Accurate analysis of MMI devices with two-dimensional confinement,” J. Lightwave Technol. 14, 2078–2084 (1996). [CrossRef]
  19. C. Themistos, B. M. A. Rahman, A. Hadjicharalabbous, K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13, 1760–1765 (1995). [CrossRef]
  20. M. D. Feit, J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980). [CrossRef] [PubMed]
  21. Van Roey, J. Van der Donk, P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981).
  22. C. Lee, E. Voges, “Three-dimensional semi-vectorial wide-angle beam propagation method,” J. Lightwave Technol. 12, 215–225 (1995). [CrossRef]
  23. K. Hayata, A. Misawa, M. Koshiba, “Split-step finite element method applied to nonlinear integrated optics,” J. Opt. Soc. Am. B 9, 1772–1784 (1990). [CrossRef]
  24. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  25. M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, S. S. A. Obayya, H. A. El-Mikathi, “Characterization of ultrashort low-loss waveguidebends for compact photonic integrated circuits,” Digest of Topical Meeting on Integrated Photonic Research (Optical Society of America, Washington, D.C., 1999), pp. 46–48.
  26. K. Smit, E. C. M. Pennings, H. Block, “Normalized approach to the design of low-loss optical waveguide bends,” J. Lightwave Technol. 11, 1737–1742 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited