OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 4959–4963

Photothermal Characterization and Stability Analysis of Polymeric Dye Lasers

Ricardo Duchowicz, Lucía B. Scaffardi, Angel Costela, Inmaculada García-Moreno, Roberto Sastre, and A. Ulises Acũa  »View Author Affiliations

Applied Optics, Vol. 39, Issue 27, pp. 4959-4963 (2000)

View Full Text Article

Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The millisecond heat dissipation of pump energy in polymeric, solid-state dye lasers has been studied with photothermal deflection spectroscopy (PTDS) to determine the contribution of that process to photodegradation of the active material. The samples were solutions of Rhodamine 6G in 2-hydroxyethyl methacrylate copolymerized with various amounts of methyl methacrylate or ethylene glycol dimethylacrylate to change the microstructure properties of the matrix. Values of the thermal diffusivity measured with PTDS were in the range 0.6–1.1 × 10−3 cm2 s−1 for all the compositions studied here. A comparison of these values with previous optical data on lasing efficiency and photostability for the same samples indicates that the macroscopic rate of thermal diffusion is not the key factor that limits the efficiency and stability of these lasers, at least for low pump repetition rates (<1 Hz).

© 2000 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2050) Lasers and laser optics : Dye lasers
(160.3380) Materials : Laser materials
(160.5470) Materials : Polymers
(300.6430) Spectroscopy : Spectroscopy, photothermal
(350.5340) Other areas of optics : Photothermal effects

Ricardo Duchowicz, Lucía B. Scaffardi, Angel Costela, Inmaculada García-Moreno, Roberto Sastre, and A. Ulises Acũa, "Photothermal Characterization and Stability Analysis of Polymeric Dye Lasers," Appl. Opt. 39, 4959-4963 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. J. Duarte, A. Costela, I. García Moreno, R. Sastre, J. J. Ehrlich, and T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron 29, 461–472 (1997).
  2. F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
  3. R. M. O’Connell and T. T. Saito, “Plastics for high-power laser applications: a review,” Opt. Eng. 22, 393–399 (1983).
  4. M. L. Ferrer, A. U. Acuña, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, and R. Sastre, “Proton-transfer lasers from solid polimeric chains with covalently bound 2-(2′-hydroxyphenyl)benzimidazole groups,” Appl. Opt. 33, 2266–2272 (1994).
  5. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo and A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
  6. R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
  7. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, and R. Sastre, “Laser action from Rhodamine 6G–doped poly(2-hydroxyethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
  8. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 27, 1028–1031 (1985).
  9. R. Duchowicz, M. Ferrer, F. Amat-Guerri, R. Sastre, and A. U. Acuña, “A proton-transfer dye laser pumped by the third harmonic of a Nd-YAG laser,” Opt. Commun. 104, 336–338 (1994).
  10. A. Costela, I. García-Moreno, J. M. Figuera, F. Amat-Guerri, J. Barroso, and R. Sastre, “Solid-state dye laser based on Coumarine 540A–doped polymeric matices,” Opt. Commun. 130, 44–50 (1996).
  11. F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, A. Costela, I. García Moreno, J. M. Figuera, F. Amat Guerri, and R. Sastre, “Relations between photophysical and lasing properties of rhodamines in solid polymeric matrices,” Appl. Phys. B 64, 651–657 (1997).
  12. T. Yamamoto, K. Fujii, S. Teramoto, A. Tagaya, E. Nihei, T. Kinoshita, Y. Koike, and K. Sasaki, “High-power polymer optical fiber amplifier and their applications,” in Doped Fiber Devices and Systems, M. Digonnet, ed., Proc. SPIE 2289, 142–152 (1994).
  13. A. Costela, F. Florido, I. García Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, and R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
  14. A. Costela, I. García Moreno, J. M. Figuera, F. Amat-Guerri, and R. Sastre, “Solid-state dye-laser based on terpolymers incorporating modified Rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
  15. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
  16. S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, and M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
  17. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
  18. A. C. Boccara, D. Fournier, W. Jackson, and N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980).
  19. J. A. Sell, ed., Photothermal Investigations of Solids and Fluids (Academic, New York, 1988).
  20. Q. He, R. Vyas, and R. Gupta, “Theory of photothermal spectroscopy in an optically dense fluid,” Appl. Opt. 36, 1841–1859 (1997).
  21. J. Brandrup and E. H. Immergut, eds. Polymer Handbook (Willey, New York, 1975).
  22. M. Ahmad, M. D. Rahn, and T. A. King, “Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of Pyrromethene 567-doped poly(methyl methacrylate),” Appl. Opt. 38, 6337–6342 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited