OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 4970–4974

Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock

Stanislav Baluschev, Nir Friedman, Lev Khaykovich, Dina Carasso, Ben Johns, and Nir Davidson  »View Author Affiliations

Applied Optics, Vol. 39, Issue 27, pp. 4970-4974 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (96 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe frequency locking of a diode laser to a two-photon transition of rubidium using the Zeeman modulation technique. We locked and tuned the laser frequency by modulating and shifting the two-photon transition frequency with ac and dc magnetic fields. We achieved a linewidth of 500 kHz and continuous tunability over 280 MHz with no laser frequency modulation.

© 2000 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(140.2020) Lasers and laser optics : Diode lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: February 23, 2000
Revised Manuscript: June 30, 2000
Published: September 20, 2000

Stanislav Baluschev, Nir Friedman, Lev Khaykovich, Dina Carasso, Ben Johns, and Nir Davidson, "Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock," Appl. Opt. 39, 4970-4974 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  2. K. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  3. W. Demtroder, Laser Spectroscopy (Springer-Verlag, New York, 1996), Chap. 4.
  4. J. Maki, N. Campbell, C. Grande, R. Knorpp, D. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,” Opt. Commun. 102, 251–256 (1993). [CrossRef]
  5. J. Hall, M. Long-Sheng, G. Kramer, “Principles of optical phase-locking: application to internal mirror He–Ne lasers phase-locked via fast control of the discharge current,” IEEE J. Quantum Electron. QE-23, 427–433 (1987). [CrossRef]
  6. R. Valenzuela, L. Cimini, R. Wilson, D. Reichmann, A. Grot, “Frequency stabilization of AlGaAs lasers to absorption-spectrum of rubidium using Zeeman effect,” Electron. Lett. 24, 725–726 (1988); A. Weis, S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662–2665 (1988). [CrossRef] [PubMed]
  7. J. Kawakami, M. Kourogi, M. Ohtsu, “Computer-controlled narrow-linewidth and frequency-stable AlGaAs laser system with unmodulated output,” Jpn. J. Appl. Phys. 33, 1623–1627 (1994). [CrossRef]
  8. See, e.g., W. D. Lee, J. C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
  9. T. Dinneen, C. Wallace, P. Gould, “Narrow linewidth, highly stable, tunable diode-laser system,” Opt. Commun. 92, 277–282 (1992). [CrossRef]
  10. F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2 – 5D3/2 2-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993). [CrossRef]
  11. V. Vuletic, V. Sautenkov, C. Zimmermann, T. Hansch, “Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy,” Opt. Commun. 99, 185–190 (1993). [CrossRef]
  12. S. Svanberg, Atomic and Molecular Spectroscopy (Springer-Verlag, Berlin, 1991), Chap. 3. [CrossRef]
  13. R. Ludeke, E. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–500 (1972). [CrossRef]
  14. L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, N. Davidson, “Ultrasensitive two-photon spectroscopy in a dark optical trap, based on long spin-relaxation times,” Europhys. Lett. 50, 454–459 (2000). [CrossRef]
  15. C. Townes, A. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chap. 5.
  16. D. Fulton, R. Mosely, S. Shephard, B. Sinclair, M. Dunn, “Effects of Zeeman splitting on electromagnetically-induced transparency,” Opt. Commun. 116, 231–239 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited