OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 27 — Sep. 20, 2000
  • pp: 5052–5057

Scattering properties of needlelike and platelike ice spheroids with moderate size parameters

Nadia T. Zakharova and Michael I. Mishchenko  »View Author Affiliations


Applied Optics, Vol. 39, Issue 27, pp. 5052-5057 (2000)
http://dx.doi.org/10.1364/AO.39.005052


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that platelike and needlelike particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.

© 2000 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(290.1090) Scattering : Aerosol and cloud effects
(290.1310) Scattering : Atmospheric scattering

History
Original Manuscript: March 9, 2000
Revised Manuscript: July 3, 2000
Published: September 20, 2000

Citation
Nadia T. Zakharova and Michael I. Mishchenko, "Scattering properties of needlelike and platelike ice spheroids with moderate size parameters," Appl. Opt. 39, 5052-5057 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-27-5052


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Mishchenko, L. D. Travis, “Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  2. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, A. Macke, “T-matrix method and its applications,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 147–172.
  4. M. I. Mishchenko, “Light scattering by nonspherical ice grains: an application to noctilucent cloud particles,” Earth Moon Planets 57, 203–211 (1992). [CrossRef]
  5. F. Kuik, J. F. de Haan, J. W. Hovenier, “Single scattering of light by circular cylinders,” Appl. Opt. 33, 4906–4918 (1994). [CrossRef] [PubMed]
  6. F. M. Schulz, K. Stamnes, J. J. Stamnes, “Shape dependence of the optical properties in size-shape distributions of randomly oriented prolate spheroids, including highly elongated shapes,” J. Geophys. Res. 104, 9413–9421 (1999). [CrossRef]
  7. V. Vouk, “Projected area of convex bodies,” Nature (London) 162, 330–331 (1948). [CrossRef]
  8. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  9. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  10. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, “Concepts, terms, notation,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 3–27. [CrossRef]
  11. M. I. Mishchenko, J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995). [CrossRef] [PubMed]
  12. M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998). [CrossRef]
  13. R. A. West, “Optical properties of aggregate particles whose outer diameter is comparable to the wavelength,” Appl. Opt. 30, 5316–5324 (1991). [CrossRef] [PubMed]
  14. K. Sassen, “Lidar backscatter depolarization technique for cloud and aerosol research,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 393–416. [CrossRef]
  15. W. F. Tozer, D. E. Beeson, “Optical model of noctilucent clouds based on polarimetric measurements from two sounding rocket campaigns,” J. Geophys. Res. 79, 5607–5612 (1974). [CrossRef]
  16. G. Witt, J. E. Dye, N. Wilhelm, “Rocket-borne measurements of scattered sunlight in the mesosphere,” J. Atmos. Terrestrial Phys. 38, 223–238 (1976). [CrossRef]
  17. R. A. West, P. H. Smith, “Evidence for aggregate particles in the atmospheres of Titan and Jupiter,” Icarus 90, 330–333 (1991). [CrossRef]
  18. M. G. Tomasko, R. A. West, N. D. Castillo, “Photometry and polarimetry of Jupiter at large phase angles. I. Analysis of imaging data of a prominent belt and a zone from Pioneer 10,” Icarus 33, 558–592 (1978). [CrossRef]
  19. P. Smith, “The vertical structure of the Jovian atmosphere,” Icarus 65, 264–279 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited