OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5109–5116

Characteristics of heat flow in optical fiber devices that use integrated thin-film heaters

John A. Rogers, Paulina Kuo, Ashish Ahuja, Benjamin J. Eggleton, and Rebecca J. Jackman  »View Author Affiliations


Applied Optics, Vol. 39, Issue 28, pp. 5109-5116 (2000)
http://dx.doi.org/10.1364/AO.39.005109


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the analysis of heat flow in a type of tunable optical fiber grating that uses thin-film resistive heaters microfabricated on the surface of the fiber. The high rate of heat loss from these microstructures and the relatively low thermal diffusivity of the glass yield unusual thermal properties. Approximate one-dimensional analytical calculations capture important aspects of the thermal characteristics of these systems. Comparison with experimental results that we obtained from devices with established designs validates certain features of the computations. This modeling also establishes the suitability of integrated thin-film heaters for several new types of tunable fiber grating devices.

© 2000 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications
(230.1480) Optical devices : Bragg reflectors
(230.3990) Optical devices : Micro-optical devices

History
Original Manuscript: March 24, 2000
Revised Manuscript: June 26, 2000
Published: October 1, 2000

Citation
John A. Rogers, Paulina Kuo, Ashish Ahuja, Benjamin J. Eggleton, and Rebecca J. Jackman, "Characteristics of heat flow in optical fiber devices that use integrated thin-film heaters," Appl. Opt. 39, 5109-5116 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-28-5109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Rogers, R. J. Jackman, G. M. Whitesides, “Constructing single and multiple helical microcoils and characterizing their performance as components of microinductors and microelectromagnets,” J. Microelectromech. Syst. 6, 184–192 (1997). [CrossRef]
  2. J. A. Rogers, R. J. Jackman, J. L. Wagener, A. M. Vengsarkar, G. M. Whitesides, “Using microcontact printing to generate photomasks on the surface of optical fibers: a new method for producing in-fiber gratings,” Appl. Phys. Lett. 70, 7–9 (1997). [CrossRef]
  3. R. J. Jackman, G. M. Whitesides, “Electrochemistry and soft lithography: a route to 3-D,” Chem. Technol. 29, 18–30 (1999).
  4. J. A. Rogers, R. J. Jackman, G. M. Whitesides, D. L. Olson, J. V. Sweedler, “Using microcontact printing to fabricate microcoils on capillaries for high resolution 1H-NMR on nanoliter volumes,” Appl. Phys. Lett. 70, 2464–2466 (1997). [CrossRef]
  5. G. R. Fox, C. A. P. Muller, N. Setter, N. H. Ky, H. G. Limberger, “Sputter deposited piezoelectric fiber coatings for acousto-optic modulators,” J. Vac. Sci. Technol. A 14, 800–805 (1996). [CrossRef]
  6. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, “Electrically tunable efficient broadband long-period fiber grating filter,” IEEE Photon. Technol. Lett. 11, 445–447 (1999). [CrossRef]
  7. G. R. Fox, C. A. P. Muller, N. Setter, D. M. Costantini, N. H. Ky, H. G. Limberger, “Wavelength tunable fiber Bragg grating devices based on sputter deposited resistive and piezoelectric coatings,” J. Vac. Sci. Technol. 15, 1791–1795 (1997). [CrossRef]
  8. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10, 361–363 (1998). [CrossRef]
  9. J. A. Rogers, B. J. Eggleton, R. J. Jackman, G. R. Kowach, T. A. Strasser, “Dual on-fiber thin-film heaters for fiber gratings with independently adjustable chirp and wavelength,” Opt. Lett. 24, 1328–1330 (1999). [CrossRef]
  10. J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, T. A. Strasser, “Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp,” Appl. Phys. Lett. 74, 3131–3133 (1999). [CrossRef]
  11. B. J. Eggleton, J. A. Rogers, P. S. Westbrook, T. A. Strasser, “Electrically tunable, power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854–856 (1999). [CrossRef]
  12. T. Strasser, Lucent Technologies, Murray Hill, N.J. 07974 (personal communication, 1999).
  13. B. J. Eggleton, T. N. Nielsen, J. A. Rogers, P. S. Westbrook, T. A. Strasser, P. B. Hansen, K. F. Dreyer, “Dispersion compensation in a dynamic 20 Gbit/s nonlinear lightwave system using electrically tunable chirped fiber grating,” Electron. Lett. 35, 832–833 (1999). [CrossRef]
  14. T. Nielsen, B. J. Eggleton, J. A. Rogers, P. S. Westbrook, T. A. Strasser, “Fiber Bragg grating tunable dispersion compensator for dynamic post dispersion optimization at 40 Gb/s,” IEEE Photon. Technol. Lett. 12, 173–175 (2000). [CrossRef]
  15. B. Mikkelsen, Lucent Technologies, Holmdel, N.J. 07733 (personal communication, 1999).
  16. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, D. Stryckman, C. Shu, “Comparison of fiber Bragg grating dispersion-compensators made with holographic and E-beam written phase masks,” IEEE Photon. Technol. Lett. 11, 572–574 (1999). [CrossRef]
  17. D. M. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, S. A. Vasiliov, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photon. Technol. Lett. 11, 1458–1460 (1999). [CrossRef]
  18. M. N. Özisik, Heat Transfer: a Basic Approach (McGraw-Hill, New York, 1985).
  19. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, London, 1959).
  20. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980).
  21. R. V. Churchill, Operational Mathematics, 3rd ed. (McGraw-Hill, New York, 1972).
  22. A. F. Mills, Heat Transfer (Irwin, Boston, 1992).
  23. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  25. H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  26. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne, “Er3 + Yb3+ codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef] [PubMed]
  27. B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620–1622 (1994). [CrossRef]
  28. T. Salamon, Lucent Technologies, Murray Hill, N.J. 07974 (personal communication, 2000).
  29. J. A. Rogers, B. J. Eggleton, T. A. Strasser, “Temperature stabilized operation of tunable fiber grating devices that use distributed on-fiber thin film heaters,” Electron. Lett. 35, 2052–2053 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited