OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5117–5124

Particle positioning from charge-coupled device images by the generalized Lorenz–Mie theory and comparison with experiment

David Moreno, Fernando Mendoza Santoyo, J. Ascencion Guerrero, and Marcelo Funes-Gallanzi  »View Author Affiliations

Applied Optics, Vol. 39, Issue 28, pp. 5117-5124 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional position and velocity information can be extracted by direct analysis of the diffraction patterns of seeding particles in imaging velocimetry with real-time CCD cameras. The generalized Lorenz–Mie theory is shown to yield quantitatively accurate models of particle position, such that it can be deduced from typical experimental particle images with an accuracy of the order of 20 µm and an error of 11 gray levels rms, data obtained by comparison of theoretical and experimental images. Both the theory and an experimental verification of the problem presented here are discussed.

© 2000 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(100.2000) Image processing : Digital image processing
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(290.4020) Scattering : Mie theory
(350.4990) Other areas of optics : Particles

Original Manuscript: January 24, 2000
Revised Manuscript: June 16, 2000
Published: October 1, 2000

David Moreno, Fernando Mendoza Santoyo, J. Ascencion Guerrero, and Marcelo Funes-Gallanzi, "Particle positioning from charge-coupled device images by the generalized Lorenz–Mie theory and comparison with experiment," Appl. Opt. 39, 5117-5124 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Gauthier, M. L. Riethmuller, “Application of PIDV to complex flows: measurements of third component,” von Karman Institute for Fluid Dynamics, Vol. 1988-06 of Lecture Series on Particle Image Displacement Velicometry (Rhode Saint Genese, Belgium, 1988).
  2. J. Westerweel, F. T. M. Nieuwstadt, “Performance tests on 3-dimensional velocity measurements with a two-camera digital particle image velocimeter,” in Laser Anemometry: Advances and Applications, A. Dybbs, B. Ghorashi, eds. (American Society of Mechanical Engineers, New York, 1991), Vol. 1, pp. 349–355.
  3. C. Gray, C. A. Greated, D. R. McCluskey, W. J. Easson, “An analysis of the scanning beam PIV illumination system,” Meas. Sci. Technol. 2, 717–724 (1991). [CrossRef]
  4. H. Meng, F. Hussain, “Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dynam. Res. 8, 33–52 (1991). [CrossRef]
  5. C. Brucker, “Study of vortex breakdown by particle tracking velocimetry,” Exp. Fluids 13, 339–349 (1992). [CrossRef]
  6. P. J. Bryanston-Cross, M. Funes-Gallanzi, T. R. Quan, T. R. Judge, “Holographic particle image velocimetry (HPIV),” Opt. Laser Technol. 24, 251–256 (1992). [CrossRef]
  7. F. Dinkelaker, M. Schaffer, W. Ketterle, J. Wolfrum, “Determination of the third velocity component with PTA using an intensity graded light sheet,” Exp. Fluids 13, 357–359 (1992).
  8. C. E. Willert, M. Gharib, “Three-dimensional particle imaging with a single camera,” Exp. Fluids 12, 353–358 (1992). [CrossRef]
  9. B. Ovryn, E. A. Hovenac, “Coherent forward scattering particle image velocimetry: application of Poisson’s spot for velocity measurements in fluids,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 338–348 (1993). [CrossRef]
  10. A. K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993). [CrossRef]
  11. R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, “An HPIV system for turbulence research,” in Proceedings of Conference on Holographic Particle Velicometry (American Socieyt of Mechanical Engineers, New York, 1993), pp. 17–22.
  12. Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3D scanning particle image velocimetry (3-D PIV) technique,” presented at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 11–14 July 1994.
  13. A. K. Prasad, K. Jensen, “Schiempflug stereocamera for particle image velocimetry in liquid flows,” Appl. Opt. 34, 7092–7099 (1995). [CrossRef] [PubMed]
  14. K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol. 6, 742–753 (1995). [CrossRef]
  15. A. Lecerf, B. Renou, D. Allano, A. Boukhalfa, M. Trinité, “Stereoscopic PIV: validation and application to an isotropic turbulent flow,” Exp. Fluids 26, 107–115 (1999). [CrossRef]
  16. M. Funes-Gallanzi, “High accuracy measurement of unsteady flows using digital PIV,” Laser Opt. Technol. 30, 349–359 (1998). [CrossRef]
  17. P. Padilla Sosa, M. Funes-Gallanzi are preparing a manuscript to be called “High accuracy at low magnification 3D PIV measurement using the concept of locales.”
  18. G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorentz–Mie,” J. Opt. (Paris) 13, 97–103 (1982). [CrossRef]
  19. K. F. Ren, G. Gréhan, G. Gouesbet, “Electromagnetic field expression of a laser sheet and the order of approximation,” J. Opt. (Paris) 25, 165–176 (1994). [CrossRef]
  20. G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  21. G. Gouesbet, C. Letellier, K. F. Ren, G. Gréhan, “Discussion of two quadrature methods of evaluating beam shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542 (1996). [CrossRef] [PubMed]
  22. G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory, using finite series,” J. Opt. (Paris) 19, 35–48 (1998). [CrossRef]
  23. G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatters centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef]
  24. G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  25. J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beam,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  26. G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beam,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  27. K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser laser-sheet beam shape coefficients in generalized Lorenz–Mie theory by use of a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994). [CrossRef]
  28. G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculation,” Appl. Opt. 34, 2113–2143 (1995). [CrossRef]
  29. K. F. Ren, G. Gouesbet, G. Gréhan, “The integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
  30. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 7, 1641–1650 (1999). [CrossRef]
  31. J. V. Dave, “Scattering of electromagnetic radiation by a large, absorbing sphere,” IBM J. Res. Dev. 13, 302–313 (1969). [CrossRef]
  32. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972), pp. 332–334.
  33. R. J. Adrian, C. S. Yao, “Development of pulsed laser velocimetry for measurement of fluid flow,” in Proceedings, Eighth biennial Symposium on Turbulence, G. Patterson, J. L. Zakin, eds. (University of Missouri, Rolla, Mo., 1983).
  34. K. J. Wiles, “Development of a system for secondary liquid injection into a Mach 2 supersonic flow to study drop size and distribution by video imaging techniques,” master’s degree thesis (University of Nebraska, Lincoln, Neb., 1985).
  35. S. A. Schaub, D. R. Alexander, J. P. Barton, “Theoretical model for the image formed by a spherical particle in a coherent imaging system: comparison to experiment,” Opt. Eng. 23, 565–571 (1989).
  36. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. (Leipzig) 30, 57–136 (1909). [CrossRef]
  37. G. Mie, “Bietrage zur Optik trüber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908). [CrossRef]
  38. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  39. J. A. Guerrero, F. Mendoza Santoyo, D. Moreno, M. Funes-Gallanzi, “Particle positioning from CCD images: experiments and comparison to the generalized Lorenz–Mie theory,” Meas. Sci. Technol. 11, 568–575 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited