OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5172–5178

Vectorial shearing interferometer

Gonzalo Paez, Marija Strojnik, and Guillermo Garcia Torales  »View Author Affiliations

Applied Optics, Vol. 39, Issue 28, pp. 5172-5178 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (2611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The vectorial shearing interferometer is based on the Mach–Zehnder configuration; it incorporates a displacement shearing system composed of a pair of wedge prisms that modify the optical path difference and the tilt of the sheared wave front with respect to that of the reference wave front. Variable shear and tilt can be implemented along any direction by choice of displacements Δx and Δy. The number of fringes and their orientation can be controlled with the vectorial shear. Knowledge of the prescribed displacements in the x and the y directions permits one to obtain a phase gradient in any direction.

© 2000 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(220.1000) Optical design and fabrication : Aberration compensation
(220.4830) Optical design and fabrication : Systems design
(220.4840) Optical design and fabrication : Testing

Original Manuscript: November 18, 1999
Revised Manuscript: May 4, 2000
Published: October 1, 2000

Gonzalo Paez, Marija Strojnik, and Guillermo Garcia Torales, "Vectorial shearing interferometer," Appl. Opt. 39, 5172-5178 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Flores, G. Paez, M. Strojnik, “Design of a diluted-aperture mirror using the practical cutoff frequency,” Appl. Opt. 38, 6010–6018 (1999). [CrossRef]
  2. M. S. Scholl, G. N. Lawrence, “Adaptive optics for in-orbit aberration correction—feasibility study,” Appl. Opt. 34, 7295–7301 (1995). [CrossRef] [PubMed]
  3. M. S. Scholl, “Recursive exact ray trace equations through tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996). [CrossRef]
  4. M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,” Infrared Phys. Technol. 37, 251–257 (1996). [CrossRef]
  5. G. Páez Padilla and M. Strojnik Scholl, “Recursive relations for ray-tracing through three-dimensional reflective confocal prolate spheroids,” Rev. Mex. Fis. 43, 875–886 (1997).
  6. G. Paez, M. S. Scholl, “Phase-shifted interferometry without phase unwrapping: reconstruction of a decentered wave front,” J. Opt. Soc. Am. A 16, 475–480 (1999). [CrossRef]
  7. M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 119–123.
  8. M. V. R. K. Murty, “A compact lateral shearing interferometer based on the Michelson interferometer,” Appl. Opt. 9, 1146–1152 (1970). [CrossRef] [PubMed]
  9. M. Strojnik Scholl, J. L. Flores, G. Paez, “Interferometric layout for extrasolar planet detection,” in Infrared Technology and Applications XXV, B. Andresen, M. Strojnik Scholl, eds., Proc. SPIE3698, 857–868 (1999).
  10. M. Strojnik Scholl and G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357–365 (1999). [CrossRef]
  11. G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998). [CrossRef]
  12. G. Paez and Marija Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1971 (1997). [CrossRef]
  13. G. Paez, M. Strojnik, “Analysis and minimization of noise effects in phase-shifting interferometry,” in Interferometry 99, Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 295–305 (1999). [CrossRef]
  14. G. Paez, M. Strojnik, J. L. Flores, “Phase reconstruction from undersampled intensity pattern(s): underdetection,” in Infrared Spaceborne Remote Sensing VII, M. Strojnik, B. Andresen, eds., Proc. SPIE3759, 29–39 (1999). [CrossRef]
  15. B. Sen, D. Sen, “Interference with beams shaped in orthogonal axis,” Opt. Laser Technol. 5, 315–318 (1985). [CrossRef]
  16. M. P. Rimmer, J. C. Wyant, “Evaluation of large aberrations using a lateral shear interferometer having variable shear,” Appl. Opt. 14, 142–149 (1977). [CrossRef]
  17. G. Paez, M. Strojnik, “Phase reconstruction from undersampled intensity patterns,” J. Opt. Soc. Am. A 17, 46–52 (2000). [CrossRef]
  18. G. Paez, M. Strojnik, “Mathematical theory of differential rotational shearing interferometry: asymmetrical aberrations,” in Interferometry 99, Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 335–346 (1999). [CrossRef]
  19. G. García Torales, M. Strojnik Scholl, G. Páez, “Controlled wavefront displacement using a thin prism system,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik, B. Andresen, eds., Proc. SPIE3437, 424–428 (1998). [CrossRef]
  20. G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999). [CrossRef]
  21. G. Páez and M. Strojnik Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 261–265 (1999). [CrossRef]
  22. M. S. Scholl, G. Paez, “Image-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997). [CrossRef]
  23. M. S. Scholl, G. Paez, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited