OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5172–5178

Vectorial Shearing Interferometer

Gonzalo Paez, Marija Strojnik, and Guillermo Garcia Torales  »View Author Affiliations


Applied Optics, Vol. 39, Issue 28, pp. 5172-5178 (2000)
http://dx.doi.org/10.1364/AO.39.005172


View Full Text Article

Acrobat PDF (2611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The vectorial shearing interferometer is based on the Mach–Zehnder configuration; it incorporates a displacement shearing system composed of a pair of wedge prisms that modify the optical path difference and the tilt of the sheared wave front with respect to that of the reference wave front. Variable shear and tilt can be implemented along any direction by choice of displacements Δx and Δy. The number of fringes and their orientation can be controlled with the vectorial shear. Knowledge of the prescribed displacements in the x and the y directions permits one to obtain a phase gradient in any direction.

© 2000 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(220.1000) Optical design and fabrication : Aberration compensation
(220.4830) Optical design and fabrication : Systems design
(220.4840) Optical design and fabrication : Testing

Citation
Gonzalo Paez, Marija Strojnik, and Guillermo Garcia Torales, "Vectorial Shearing Interferometer," Appl. Opt. 39, 5172-5178 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-28-5172


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Flores, G. Paez, and M. Strojnik, “Design of a diluted-aperture mirror using the practical cutoff frequency,” Appl. Opt. 38, 6010–6018 (1999).
  2. M. S. Scholl and G. N. Lawrence, “Adaptive optics for in-orbit aberration correction—feasibility study,” Appl. Opt. 34, 7295–7301 (1995).
  3. M. S. Scholl, “Recursive exact ray trace equations through tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996).
  4. M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,” Infrared Phys. Technol. 37, 251–257 (1996).
  5. G. Páez Padilla and M. Strojnik Scholl, “Recursive relations for ray-tracing through three-dimensional reflective confocal prolate spheroids,” Rev. Mex. Fis. 43, 875–886 (1997).
  6. G. Paez and M. S. Scholl, “Phase-shifted interferometry without phase unwrapping: reconstruction of a decentered wave front,” J. Opt. Soc. Am. A 16, 475–480 (1999).
  7. M. Strojnik and G. Paez, “Testing the aspherical surfaces with the differential rotationally-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, and J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 119–123.
  8. M. V. R. K. Murty, “A compact lateral shearing interferometer based on the Michelson interferometer,” Appl. Opt. 9, 1146–1152 (1970).
  9. M. Strojnik Scholl, J. L. Flores, and G. Paez, “Interferometric layout for extrasolar planet detection,” in Infrared Technology and Applications XXV, B. Andresen and M. Strojnik Scholl, eds., Proc. SPIE 3698, 857–868 (1999).
  10. M. Strojnik Scholl and G. Paez, “Cancellation of star light generated by a nearby star–planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357–365 (1999).
  11. G. Paez and M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998).
  12. G. Paez and Marija Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1971 (1997).
  13. G. Paez and M. Strojnik, “Analysis and minimization of noise effects in phase-shifting interferometry,” in Interferometry 99, Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 295–305 (1999).
  14. G. Paez, M. Strojnik, and J. L. Flores, “Phase reconstruction from undersampled intensity pattern(s): underdetection,” in Infrared Spaceborne Remote Sensing VII, M. Strojnik and B. Andresen, eds., Proc. SPIE 3759, 29–39 (1999).
  15. B. Sen and D. Sen, “Interference with beams shaped in orthogonal axis,” Opt. Laser Technol. 5, 315–318 (1985).
  16. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral shear interferometer having variable shear,” Appl. Opt. 14, 142–149 (1977).
  17. G. Paez and M. Strojnik, “Phase reconstruction from undersampled intensity patterns,” J. Opt. Soc. Am. A 17, 46–52 (2000).
  18. G. Paez and M. Strojnik, “Mathematical theory of differential rotational shearing interferometry: asymmetrical aberrations,” in Interferometry 99, Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 335–346 (1999).
  19. G. García Torales, M. Strojnik Scholl, and G. Páez, “Controlled wavefront displacement using a thin prism system,” in Infrared Spaceborne Remote Sensing VI, M. Strojnik and B. Andresen, eds., Proc. SPIE 3437, 424–428 (1998).
  20. G. Paez and M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–116 (1999).
  21. G. Páez and M. Strojnik Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 261–265 (1999).
  22. M. S. Scholl and G. Paez, “Image-plane incidence for a baffled infrared telescope,” Infrared Phys. Technol. 38, 87–92 (1997).
  23. M. S. Scholl and G. Paez, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited