OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5231–5243

Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason  »View Author Affiliations

Applied Optics, Vol. 39, Issue 28, pp. 5231-5243 (2000)

View Full Text Article

Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement of dynamic changes in the blood oxygenation of tumor vasculature could be valuable for tumor prognosis and optimizing tumor treatment plans. In this study we employed near-infrared spectroscopy (NIRS) to measure changes in the total hemoglobin concentration together with the degree of hemoglobin oxygenation in the vascular bed of breast and prostate tumors implanted in rats. Measurements were made while inhaled gas was alternated between 33% oxygen and carbogen (95% O2, 5% CO2). Significant dynamic changes in tumor oxygenation were observed to accompany respiratory challenge, and these changes could be modeled with two exponential components, yielding two time constants. Following the Fick principle, we derived a simplified model to relate the time constants to tumor blood-perfusion rates. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive means of monitoring the vascular oxygenation dynamics of tumors and facilitate investigations of tumor vascular perfusion. This may have prognostic value and promises insight into tumor vascular development.

© 2000 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason, "Noninvasive Investigation of Blood Oxygenation Dynamics of Tumors by Near-Infrared Spectroscopy," Appl. Opt. 39, 5231-5243 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Gray, A. Conger, M. Ebert, S. Hornsey, and O. Scott, “The concentration of oxygen dissolved in tissues at time of irradiation as a factor in radio-therapy,” Br. J. Radiol. 26, 638–648 (1953).
  2. M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schaffer, and P. Vaupel, “Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix,” Cancer Res. 56, 4509–4515 (1996).
  3. T. Y. Reynolds, S. Rockwell, and P. M. Glazer, “Genetic instability induced by the tumor microenvironment,” Cancer Res. 56, 5754–5757 (1996).
  4. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissues in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
  5. J. A. O’Hara, F. Goda, K. J. Liu, G. Bacic, P. J. Hoopes, and H. M. Swartz, “The pO2 in a murine tumor after irradiation: an in vivo electron paramagnetic resonance oximetry study,” Radiat. Res. 144, 222–229 (1995).
  6. R. P. Mason, A. Constantinescu, S. Hunjan, D. Le, E. W. Hahn, P. P. Antich, C. Blum, and P. Peschke, “Regional tumor oxygenation and measurement of dynamic changes,” Radiat. Res. 152, 239–245 (1999).
  7. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London B 952, 649–659 (1997).
  8. M. Fabiani, G. Gratton, and P. M. Corballis, “Noninvasive near-infrared optical imaging of human brain function with subsecond temporal resolution,” J. Biomed. Opt. 1, 387–398 (1996).
  9. R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernarding, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1, 399–404 (1996).
  10. M. Cope and D. T. Delpy, “A system for long-term measurement of cerebral blood and tissue oxygenation in newborn infants by near-infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988).
  11. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998), http://www.epubs.osa.org/opticsexpress.
  12. A. M. Siegel, J. A. Marota, J. Mandeville, B. Rosen, and D. A. Boas, “Diffuse optical tomography of rat brain function,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, eds., Proc. SPIE 3597, 252–261 (1999).
  13. S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signals in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
  14. M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B: Biol. 16, 141–153 (1992).
  15. M. Ferrari, R. A. De Blasi, S. Fantini, M. A. Franceschini, B. Barbieri, V. Quaresima, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by a frequency-domain near-infrared spectroscopic technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc. SPIE 2389, 868–874 (1995).
  16. H. Long, G. Lech, S. Nioka, S. Zhou, and B. Chance, “CW imaging of human muscle using near-infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 256–259.
  17. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
  18. B. M. Fenton, S. F. Paoni, J. Lee, C. J. Koch, and E. M. Lord, “Quantification of tumor vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements,” Br. J. Cancer 79, 464–471 (1999).
  19. H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, and D. Moore, “Evaluation of BA 1112 rhabdomyosarcoma oxygenation with microelectrodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
  20. F. Steinberg, H. J. Röhrborn, T. Otto, K. M. Scheufler, and C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
  21. R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
  22. E. L. Hull, D. L. Conover, and T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
  23. M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  24. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
  25. H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
  26. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
  27. E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P. P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: a new tumor model for NMR studies,” Magn. Reson. Imaging. 11, 1007–1017 (1993).
  28. Y. Yang, H. Liu, X. Li, and B. Chance, “Low-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging,” Opt. Eng. 36, 1562–1569 (1997).
  29. H. Y. Ma, Q. Xu, J. R. Ballesteros, V. Ntziachristors, Q. Zhang, and B. Chance, “Quantitative study of hypoxia stress in piglet brain by IQ phase modulation oximetry,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, and B. J. Tromberg, eds., Proc. SPIE 3597, 642–649 (1999).
  30. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  31. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, 1988).
  32. KaleidaGraph, Version 3.08 (Synergy Software, 2457 Perkiomen Avenue, Reading, Pa. 19606, 1996).
  33. J. L. Hintze, NCSS, Version 6.0, User’s Guide II: Statistical System for Windows (Number Cruncher Statistical Systems, Kaysville, Utah, 1996).
  34. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
  35. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
  36. H. Liu, C. L. Matson, K. Lau, and R. R. Mapakshi, “Experimental validation of a backpropagation algorithm for three-dimensional breast tumor localization,” IEEE J. Select. Top. Quantum Electron. 5, 1049–1057 (1999).
  37. S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissue,” Pharmacol. Rev. 3, 1–41 (1951).
  38. H. Watabe, M. Itoh, V. Cunningham, A. A. Lammertsma, P. Bloomfield, M. Mejia, T. Fujiwara, A. K. P. Johes, T. Johes, and T. Nakamura, “Noninvasive quantification of rCBF using positron emission tomography,” J. Cerebr. Blood Flow Metab. 16, 311–319 (1996).
  39. S. S. Kety, “Cerebral circulation and its measurement by inert diffusible racers,” Israel J. Med. Sci. 23, 3–7 (1987).
  40. A. D. Edwards, C. Richardson, P. Van Der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. R. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol. 75, 1884–1889 (1993).
  41. H. J. J. A. Bernsen, P. F. J. W. Rijken, T. Oostendorp, and A. J. van der Kogel, “Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse,” Br. J. Cancer 71, 721–726 (1995).
  42. R. P. Mason, P. P. Antich, E. E. Babcock, A. Constantinescu, P. Peschke, and E. W. Hahn, “Noninvasive determination of tumor oxygen tension and local variation with growth,” Int. J. Radiat. Oncol. Biol. Phys. 29, 95–103 (1994).
  43. B. P. J. van der Sanden, A. Heerschap, A. W. Simonetti, P. J. F. W. Rijken, H. P. W. Peters, G. Stuben, and A. J. van der Kogel, “Characterization and validation on noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry,” Int. J. Radiat. Oncol. Biol. Phys. 44, 649–658 (1999).
  44. S. Hunjan, R. P. Mason, A. Constantinescu, P. Pescheke, E. W. Hahn, and P. P. Antich, “Regional tumor oximetry: 19F NMR spectroscopy of hexafluorobenzene,” Int. J. Radiat. Oncol. Biol. Phys. 41, 161–171 (1998).
  45. S. Hunjan, D. Zhao, A. Constantinescu, E. W. Hahn, P. P. Antich, and R. P. Mason, “Tumor oximetry: an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging,” Int. J. Radiat. Oncol. Biol. Phys. (to be published).
  46. S. P. Robinson, F. A. Howe, L. M. Rodrigues, M. Stubbs, and J. R. Griffiths, “Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow,” Semin. Radiat. Oncol. 8, 198–207 (1998).
  47. B. M. Fenton, “Effects of carbogen plus fractionated irradiation on KHT tumor oxygenation,” Radiother. Oncol. 44, 183–190 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited