OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 28 — Oct. 1, 2000
  • pp: 5244–5255

Excitation with a Focused, Pulsed Optical Beam in Scattering Media: Diffraction Effects

Vincent Ricardo Daria, Caesar Saloma, and Satoshi Kawata  »View Author Affiliations


Applied Optics, Vol. 39, Issue 28, pp. 5244-5255 (2000)
http://dx.doi.org/10.1364/AO.39.005244


View Full Text Article

Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To gain a better understanding of the spatiotemporal problems that are encountered in two-photon excitation fluorescence imaging through highly scattering media, we investigate how diffraction affects the three-dimensional intensity distribution of a focused, pulsed optical beam propagating inside a scattering medium. In practice, the full potential of the two-photon excitation fluorescence imaging is unrealized at long scattering depths, owing to the unwanted temporal and spatial broadening of the femtosecond excitation light pulse that reduces the energy density at the geometric focus while it increases the excitation energy density in the out-of-focus regions. To analyze the excitation intensity distribution, we modify the Monte Carlo–based photon-transport model to a semi-quantum-mechanical representation that combines the wave properties of light with the particle behavior of the propagating photons. In our model the propagating photon is represented by a plane wave with its propagation direction in the scattering medium determined by the Monte Carlo technique. The intensity distribution in the focal region is given by the square of the linear superposition of the various plane waves that arrive at different incident angles and optical path lengths. In the absence of scattering, the propagation model yields the intensity distribution that is predicted by the Huygens–Fresnel principle. We quantify the decrease of the energy density delivered at the geometric focus as a function of the optical depth to the mean-free-path ratio that yields the average number of scattering events that a photon encounters as it propagates toward the focus. Both isotropic and anisotropic scattering media are considered. Three values for the numerical aperture (NA) of the focusing lens are considered: NA = 0.25, 0.5, 0.75.

© 2000 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(180.2520) Microscopy : Fluorescence microscopy
(290.7050) Scattering : Turbid media

Citation
Vincent Ricardo Daria, Caesar Saloma, and Satoshi Kawata, "Excitation with a Focused, Pulsed Optical Beam in Scattering Media: Diffraction Effects," Appl. Opt. 39, 5244-5255 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-28-5244

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited