OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 29 — Oct. 10, 2000
  • pp: 5347–5352

Shift- and scale-invariant recognition of contour objects with logarithmic radial harmonic filters

Antonio Moya, José J. Esteve-Taboada, Javier García, and Carlos Ferreira  »View Author Affiliations


Applied Optics, Vol. 39, Issue 29, pp. 5347-5352 (2000)
http://dx.doi.org/10.1364/AO.39.005347


View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The phase-only logarithmic radial harmonic (LRH) filter has been shown to be suitable for scale-invariant block object recognition. However, an important set of objects is the collection of contour functions that results from a digital edge extraction of the original block objects. These contour functions have a constant width that is independent of the scale of the original object. Therefore, since the energy of the contour objects decreases more slowly with the scale factor than does the energy of the block objects, the phase-only LRH filter has difficulties in the recognition tasks when these contour objects are used. We propose a modified LRH filter that permits the realization of a shift- and scale-invariant optical recognition of contour objects. The modified LRH filter is a complex filter that compensates the energy variation resulting from the scaling of contour objects. Optical results validate the theory and show the utility of the newly proposed method.

© 2000 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition

History
Original Manuscript: February 23, 2000
Revised Manuscript: June 27, 2000
Published: October 10, 2000

Citation
Antonio Moya, José J. Esteve-Taboada, Javier García, and Carlos Ferreira, "Shift- and scale-invariant recognition of contour objects with logarithmic radial harmonic filters," Appl. Opt. 39, 5347-5352 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-29-5347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  3. D. Casasent, D. P. Psaltis, “Position, rotation, and scale invariant optical correlation,” Appl. Opt. 15, 1795–1799 (1976). [CrossRef] [PubMed]
  4. D. Casasent, D. P. Psaltis, “Scale invariant optical correlation using Mellin transforms,” Opt. Commun. 17, 59–63 (1976). [CrossRef]
  5. J. Duvernoy, “Optical-digital processing of directional terrain textures invariant under translation, rotation, and change of scale,” Appl. Opt. 23, 828–837 (1984). [CrossRef] [PubMed]
  6. Y. Sheng, J. Duvernoy, “Circular-Fourier-radial-Mellin transform descriptors for pattern recognition,” J. Opt. Soc. Am. A 3, 885–888 (1986). [CrossRef] [PubMed]
  7. Y. Sheng, C. Lejeune, “Invariant pattern recognition using Fourier–Mellin transforms and neural networks,” J. Opt. (Paris) 22, 223–228 (1991). [CrossRef]
  8. Y. Sheng, H. H. Arsenault, “Experiments on pattern recognition using invariant Fourier–Mellin descriptors,” J. Opt. Soc. Am. A 3, 771–776 (1986). [CrossRef] [PubMed]
  9. M. Fang, G. Häusler, “Class of transforms invariant under shift, rotation, and scaling,” Appl. Opt. 29, 704–708 (1990). [CrossRef] [PubMed]
  10. E. W. Hansen, J. W. Goodman, “Optical reconstruction from projections via circular harmonic expansion,” Opt. Commun. 24, 268–272 (1978). [CrossRef]
  11. Y. N. Hsu, H. H. Arsenault, G. April, “Rotational-invariant digital pattern recognition using circular harmonic expansion,” Appl. Opt. 21, 4012–4015 (1982). [CrossRef] [PubMed]
  12. Y. N. Hsu, H. H. Arsenault, “Optical recognition using circular harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  13. T. Szoplik, “Shift and scale-invariant anamorphic Fourier correlator,” J. Opt. Soc. Am. A 2, 1419–1423 (1985). [CrossRef]
  14. T. Szoplik, H. H. Arsenault, “Shift and scale-invariant anamorphic Fourier correlator using multiple circular harmonic filters,” Appl. Opt. 24, 3179–3183 (1985). [CrossRef] [PubMed]
  15. J. García, T. Szoplik, C. Ferreira, “Shift-and-scale-invariant pattern recognition using an elliptic coordinate-transformed phase-only filter,” Appl. Opt. 31, 4823–4828 (1992). [CrossRef] [PubMed]
  16. D. Cojoc, M. T. Molina, J. García, C. Ferreira, “Coordinate-transformed filter for shift-invariant and scale-invariant pattern recognition,” Appl. Opt. 36, 4812–4815 (1997). [CrossRef] [PubMed]
  17. K. Mersereau, G. M. Morris, “Scale, rotation, and shift invariant image recognition,” Appl. Opt. 25, 2338–2342 (1986). [CrossRef] [PubMed]
  18. J. J. Esteve-Taboada, J. García, C. Ferreira, “Extended scale-invariant pattern recognition with white-light illumination,” Appl. Opt. 39, 1268–1271 (2000). [CrossRef]
  19. D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988). [CrossRef]
  20. J. Rosen, J. Shamir, “Scale invariant pattern recognition with logarithmic radial harmonic filters,” Appl. Opt. 28, 240–244 (1989). [CrossRef] [PubMed]
  21. A. Moya, D. Mendlovic, J. García, C. Ferreira, “Projection-invariant pattern recognition with a phase-only logarithmic-harmonic-derived filter,” Appl. Opt. 35, 3862–3867 (1996). [CrossRef] [PubMed]
  22. J. W. Lee, I. S. Kweon, “Extraction of line features in a noisy image,” Pattern Recogn. 30, 1651–1660 (1997). [CrossRef]
  23. A. Elmabrouk, A. Aggoun, “Edge detection using local histogram analysis,” Electron. Lett. 34, 1216–1217 (1998). [CrossRef]
  24. A. Barducci, I. Pippi, “Object recognition by edge analysis: a case study,” Opt. Eng. 38, 284–294 (1999). [CrossRef]
  25. A. Bandera, C. Urdiales, F. Arrebola, F. Sandoval, “2D object recognition based on curvature functions obtained from local histograms of the contour chain code,” Pattern Recogn. Lett. 20, 49–55 (1999). [CrossRef]
  26. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  27. I. Moreno, C. Gorecki, J. Campos, M. J. Yzuel, “Comparison of computer-generated holograms produced by laser printers and lithography: application to pattern recognition,” Opt. Eng. 34, 3520–3525 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited