OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 29 — Oct. 10, 2000
  • pp: 5353–5359

Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears

Clemens Elster  »View Author Affiliations

Applied Optics, Vol. 39, Issue 29, pp. 5353-5359 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is proposed for exact discrete reconstruction of a two-dimensional wave front from four suitably designed lateral shearing experiments. The method reconstructs any wave front at evaluation points of a circular aperture exactly up to an arbitrary constant for noiseless data, and it shows excellent stability properties in the case of noisy data. Application of large shears is allowed, and high resolution of the reconstructed wave front can be achieved. Results of numerical experiments are presented that demonstrate the capability of the method.

© 2000 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: September 27, 1999
Revised Manuscript: February 25, 2000
Published: October 10, 2000

Clemens Elster, "Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears," Appl. Opt. 39, 5353-5359 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ronchi, “Le frangi die combazione nello studio delle superficie e dei sistemi ottici,” Riv. Ottica Mecc. Precis. 2, 9–35 (1923).
  2. W. J. Bates, “A wavefront shearing interferometer,” Proc. Phys. Soc. 59, 940–952 (1947). [CrossRef]
  3. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437–450 (1964). [CrossRef]
  4. H. Schreiber, J. Schwider, “Lateral shearing interferometer based on two Ronchi gratings in series,” Appl. Opt. 36, 5321–5324 (1997). [CrossRef] [PubMed]
  5. M. P. Rimmer, J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975). [CrossRef] [PubMed]
  6. K. R. Freischlad, C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986). [CrossRef]
  7. G. Harbers, P. J. Kunst, G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162–6172 (1996). [CrossRef] [PubMed]
  8. M. Servin, D. Malacara, J. L. Marroquin, “Wave-front recovery from two orthogonal sheared interferograms,” Appl. Opt. 35, 4343–4348 (1996). [CrossRef] [PubMed]
  9. M. P. Rimmer, “Method for evaluating lateral shearing interferometer,” Appl. Opt. 13, 623–629 (1974). [CrossRef] [PubMed]
  10. D. L. Fried, “Least-squares fitting a wavefront distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  11. R. H. Hudgin, “Wavefront reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  12. R. J. Noll, “Phase estimates from slope-type wavefront sensors,” J. Opt. Soc. Am. 68, 139–140 (1978). [CrossRef]
  13. R. L. Frost, C. K. Rushforth, B. S. Baxter, “Fast FFT-based algorithm for phase estimation in speckle imaging,” Appl. Opt. 18, 2056–2061 (1979). [CrossRef] [PubMed]
  14. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979). [CrossRef]
  15. W. H. Southwell, “Wavefront estimation from wavefront slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  16. K. Freischlad, “Sensitivity of heterodyne shearing interferometers,” Appl. Opt. 26, 4053–4054 (1987). [CrossRef] [PubMed]
  17. H. Takajo, T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988). [CrossRef]
  18. D. C. Ghiglia, L. A. Romero, “Direct phase estimation from phase differences using elliptic partial differential equation solvers,” Opt. Lett. 14, 1107–1109 (1989). [CrossRef] [PubMed]
  19. F. Roddier, C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991). [CrossRef] [PubMed]
  20. X. Tian, M. Itoh, T. Yatagai, “Simple algorithm for large-grid phase reconstruction of lateral-shearing interferometry,” Appl. Opt. 34, 7213–7220 (1995). [CrossRef] [PubMed]
  21. G. W. R. Leibbrandt, G. Harbers, P. J. Kunst, “Wavefront analysis with high accuracy by use of a double-grating lateral shearing interferometer,” Appl. Opt. 35, 6151–6161 (1996). [CrossRef] [PubMed]
  22. H. von Brug, “Zernike polynomials as a basis for wavefront fitting in lateral shearing interferometry,” Appl. Opt. 36, 2788–2790 (1997). [CrossRef]
  23. S. Loheide, I. Weingärtner, “New procedure for wavefront reconstruction,” Optik 108, 53–62 (1998).
  24. C. Elster, I. Weingärtner, “Exact wave-front reconstruction from two lateral shearing interferograms,” J. Opt. Soc. Am. 16, 2281–2285 (1999). [CrossRef]
  25. C. Elster, I. Weingärtner, “Solution to the shearing problem,” Appl. Opt. 38, 5024–5031 (1999). [CrossRef]
  26. C. Elster, “Recovering wavefronts from difference measurements in lateral shearing interferometry,” J. Comp. Appl. Math. 110, 177–180 (1999). [CrossRef]
  27. C. Elster, “Evaluation of lateral shearing interferograms,” in Advanced Mathematical Tools in Metrology IV, P. Ciarlini, ed. (World Scientific, Singapore, 2000), pp. 76–87. [CrossRef]
  28. P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic, London, 1981).
  29. IMSL Math/library (Visual Numerics Inc., Houston, Tex., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited