OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 29 — Oct. 10, 2000
  • pp: 5367–5373

Planar-integrated optical vector-matrix multiplier

Matthias Gruber, Jürgen Jahns, and Stefan Sinzinger  »View Author Affiliations

Applied Optics, Vol. 39, Issue 29, pp. 5367-5373 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (2716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design of a planar-integrated optoelectronic vector-matrix multiplier. The inherent parallel-processing potential is fully exploited by optical implementation of multiplications and summations. Planar integration makes the free-space optical system compatible with electronic VLSI technologies. It is composed of phase-only diffractive optical elements, which implement lens and multiple-beam-splitter functions. A demonstrator version of the optical system for a matrix of size 10 × 10 was fabricated on quartz glass by means of multimask lithography and reactive ion etching. It shows low cross talk and good uniformity of the signals.

© 2000 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(200.0200) Optics in computing : Optics in computing
(200.4490) Optics in computing : Optical buffers
(200.4860) Optics in computing : Optical vector-matrix systems
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: August 20, 1999
Revised Manuscript: July 11, 2000
Published: October 10, 2000

Matthias Gruber, Jürgen Jahns, and Stefan Sinzinger, "Planar-integrated optical vector-matrix multiplier," Appl. Opt. 39, 5367-5373 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, A. R. Diaz, L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978). [CrossRef] [PubMed]
  2. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1989).
  3. I. Shariv, A. A. Friesem, “All-optical neural network with inhibitory neurons,” Opt. Lett. 14, 485–487 (1989). [CrossRef] [PubMed]
  4. G. Palm, “On associative memory,” Biol. Cybern. 36, 19–31 (1980). [CrossRef] [PubMed]
  5. G. Grimm, D. Fey, “An associative memory based on hybrid SEED technology,” in Optics in Computing ’98, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 339–342 (1998). [CrossRef]
  6. M. Gruber, J. Jahns, S. Sinzinger, “Integrated opto-electronic implementation of a binary associative memory,” in Technical Digest of the 6th Microoptics Conference and the 14th Topical Meeting on Gradient-Index Optical Systems (Noguchi Corporation, Nishi-Tsutsujigaoka, Chofu City, Tokyo, Japan, 1997), pp. 86–89.
  7. H. S. Stone, ed., Introduction to Computer Architecture (Science Research Associates, Chicago, 1975).
  8. P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996). [CrossRef]
  9. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef] [PubMed]
  10. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994). [CrossRef]
  11. S. Sherr, Electronic Displays (Wiley, New York, 1993).
  12. P. F. van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglas, “A MEMS-based projection display,” Proc. IEEE 86, 1687–1704 (1998). [CrossRef]
  13. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993). [CrossRef]
  14. N. Streibl, “Beam shaping with optical array generators,” J. Mod. Opt. 36, 1559–1573 (1989). [CrossRef]
  15. M. M. Downs, J. Jahns, “Integrated-optical array generator,” Opt. Lett. 15, 769–770 (1990). [CrossRef] [PubMed]
  16. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase form image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  17. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  18. V. Arrizón, M. Testorf, “Efficiency limit of spatially quantized Fourier array illuminators,” Opt. Lett. 22, 197–199 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited