OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 3 — Jan. 20, 2000
  • pp: 376–385

Spectral Diversity Technique for Heterodyne Doppler Lidar that uses Hard Target Returns

Philippe Drobinski, Pierre H. Flamant, and Philippe Salamitou  »View Author Affiliations


Applied Optics, Vol. 39, Issue 3, pp. 376-385 (2000)
http://dx.doi.org/10.1364/AO.39.000376


View Full Text Article

Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-mode CO<sub>2</sub> laser is used as transmitter in a 10-μm heterodyne Doppler lidar (HDL) to take advantage of a spectral diversity technique, i.e., independent realizations obtained with different spectral components. The objective is to improve the properties (i.e., less variance) of power returns from a hard target. The statistical properties are presented first for a broad-spectrum laser transmitter and then for a two-mode laser transmitter. The experimental results for a cooperative diffuse hard target show that the return signals for a frequency separation Δ<i>f</i> = 15 MHz can be decorrelated, depending on the angle of incidence and the target roughness. The experimental results show that the spectral diversity technique improves the performance of the HDL.

© 2000 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6140) Coherence and statistical optics : Speckle
(040.2840) Detectors : Heterodyne
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(290.5880) Scattering : Scattering, rough surfaces

Citation
Philippe Drobinski, Pierre H. Flamant, and Philippe Salamitou, "Spectral Diversity Technique for Heterodyne Doppler Lidar that uses Hard Target Returns," Appl. Opt. 39, 376-385 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-3-376


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. J. Post and W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
  2. P. J. Neiman, R. M. Hardesty, M. A. Shapiro, and R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
  3. W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
  4. R. M. Banta, L. D. Olivier, and D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
  5. R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, and D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
  6. R. M. Banta, L. D. Olivier, P. H. Gudiksen, and R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
  7. R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, and D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
  8. P. Drobinski, R. A. Brown, P. H. Flamant, and J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
  9. G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
  10. K. Asai and T. Igarashi, “Interference from differential reflectance of moist topographic targets in CO2 DIAL ozone measurement,” Appl. Opt. 23, 735–739 (1984).
  11. E. E. Uthe, “Airborne CO2 DIAL measurements of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492–2498 (1986).
  12. A. Papayannis, G. Ancellet, J. Pelon, and G. Mégie, “Multiwavelength lidar for ozone measurement in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
  13. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
  14. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system,” Appl. Opt. 32, 4534–4551 (1993).
  15. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, and J. P. Chiaroni, “CO2 laser-based differential absorption system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6199 (1995).
  16. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, and B. J. Rye, “Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,” in Proceedings of the Nineteenth International Laser Radar Conference (National Aeronautics and Space Administration, Washington, D.C., 1998), pp. 565–568.
  17. X. Favreau, A. M. Dabas, P. Delville, P. Salamitou, J. Pelon, and P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constuents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.
  18. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
  19. A. M. Dabas, P. Drobinski, and P. H. Flamant, “Chirp-induced bias in velocity measurements by a coherent Doppler CO2 lidar,” J. Atmos. Oceanic Technol. 15, 407–415 (1998).
  20. X. Favreau, A. Delaval, P. Delville, C. Loth, and P. H. Flamant, “Use of a detector array in the LMD CO2 coherent laser radar,” in Proceedings of the Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.
  21. R. J. Doviak and D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984), p. 143.
  22. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
  23. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar returns,” Appl. Opt. 21, 839–844 (1982).
  24. P. Salamitou, A. Dabas, and P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–505 (1995).
  25. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 20–53.
  26. J. H. Churnside and H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
  27. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 77–121.
  28. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 626–697.
  29. I. P. Christov, “Generation and propagation of ultrashort pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1991), Vol. 29, pp. 201–291.
  30. P. Delville, C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, and J. C. Farcy, “A new TE-CO2 laser for coherent lidar and wind applications,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 297–300.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited