OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5393–5402

Effect of aerosol particle microstructure on cw Doppler lidar signal statistics

Viktor A. Banakh, Igor N. Smalikho, and Christian Werner  »View Author Affiliations

Applied Optics, Vol. 39, Issue 30, pp. 5393-5402 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analysis of signal statistical characteristics is carried out, and estimation errors of the radial wind velocity are calculated by use of numerical simulation of a cw Doppler lidar return, taking into account the atmospheric aerosol microstructure. It has been found that, at small sounded volume, the large particles contribute significantly to the scattered field. As a result the lidar return probability density function distribution can differ significantly from a Gaussian distribution. Neglect of the aerosol microstructure effect results in considerable underestimation of the error of cw Doppler lidar velocity estimates at small sounded volume.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: September 10, 1999
Revised Manuscript: April 27, 2000
Published: October 20, 2000

Viktor A. Banakh, Igor N. Smalikho, and Christian Werner, "Effect of aerosol particle microstructure on cw Doppler lidar signal statistics," Appl. Opt. 39, 5393-5402 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. A. Banakh, I. N. Smalikho, F. Köpp, Ch. Werner, “Measurement of turbulent energy dissipation rate with a cw Doppler lidar in the atmospheric boundary layer,” J. Atmos. Oceanic Technol. 16, 1044–1061 (1999). [CrossRef]
  2. V. A. Banakh, Ch. Werner, F. Köpp, I. N. Smalikho, “Fluctuation spectra of wind velocity measured with a Doppler lidar,” Atmos. Oceanic Opt. 10, 202–208 (1997).
  3. R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. A. Woodfield, “An airborne laser air motion sensing system. Part I: concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987). [CrossRef]
  4. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971). [CrossRef] [PubMed]
  5. T. R. Lawrence, D. J. Wilson, C. E. Craver, I. P. Jones, R. M. Huffaker, J. A. Thomson, “A laser velocimeter for remote wind sensing,” Rev. Sci. Instrum. 43, 512–518 (1972). [CrossRef]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media. Vol. 1. Single Scattering and Transport Theory (Academic, New York, 1978), p. 37.
  7. V. E. Zuev, G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986), p. 26, in Russian.
  8. Ch. Junge, Chemical Composition and Radioactivity of the Atmosphere (Mir, Moscow, 1965), in Russian.
  9. R. Storm, Wahrscheinlichkeitsrechnung. Mathematiksche Statistic. Statistische Qualitätskontrolle (VEB Fachbuchverlag, Leipzig, 1967).
  10. N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, G. N. Shur, Turbulence in the Free Atmosphere (Consultants Bureau, London, 1973).
  11. I. N. Smalikho, “On measurement of the dissipation rate of turbulent energy dissipation with a cw Doppler lidar,” Atmos. Oceanic Opt. 8, 788–793 (1995).
  12. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981). [CrossRef] [PubMed]
  13. B. Crosignani, P. Di Porto, M. Bertolotty, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.
  14. D. S. Zrnic, “Estimation of spectral moments for weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited