OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5415–5425

From the Grating Scale Monitor to the Generalized Seeing Monitor

Aziz Ziad, Rodolphe Conan, Andrei Tokovinin, François Martin, and Julien Borgnino  »View Author Affiliations


Applied Optics, Vol. 39, Issue 30, pp. 5415-5425 (2000)
http://dx.doi.org/10.1364/AO.39.005415


View Full Text Article

Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An instrument named the grating scale monitor for measuring the outer scale ℒ0 from the angle-of-arrival (AA) fluctuations of a perturbed wave front was developed a few years ago at Nice University. The AA is detected with a 5-ms time resolution by modulation of the stellar image in a small telescope with a grating. One uses the normalized covariance of AA fluctuations to estimate ℒ0. A new version of this instrument, the generalized seeing monitor (GSM) is described. It consists of four identical modules for measuring the AA at four locations on the wave front. A spatiotemporal analysis of these data leads to the determination of seeing ε0, outer scale ℒ0, and the wave-front speed. In addition, isoplanatic angle θ0 is determined from scintillation, making the characterization of turbulence with the GSM almost complete. We describe the instrument and make a detailed analysis of its performance and accuracy. Several site-testing campaigns have been conducted with the GSM: at La Silla (Chile), Oukaïmeden (Morocco), Maidanak (Uzbekistan), and Cerro Pachon and Cerro Paranal (Chile). The main results of these campaigns are presented and discussed.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.1350) Atmospheric and oceanic optics : Backscattering

Citation
Aziz Ziad, Rodolphe Conan, Andrei Tokovinin, François Martin, and Julien Borgnino, "From the Grating Scale Monitor to the Generalized Seeing Monitor," Appl. Opt. 39, 5415-5425 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-30-5415


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ziad, “Estimation des échelles limites de cohérence spatiale des fronts d’onde et optimisation des observations à Haute Résolution Angulaire en Astronomie,” Ph.D. dissertation, (Université de Nice-Sophia Antipolis, Nice, France), 1993.
  2. A. Ziad, J. Borgnino, A. Agabi, and F. Martin, “Optimized spectral bandwidth in high angular resolution imaging. Effect of a finite spatial-coherence outer scale,” Exp. Astron. 5, 247–268 (1994).
  3. R. Sasiela, Electromagnetic Wave Propagation in Turbulence. Evaluation and Application of Mellin Transforms (Springer-Verlag, New York, 1994).
  4. D. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991).
  5. G. Boreman and C. Dainty, “Zernike expansions for non-Kolmogorov turbulence,” J. Opt. Soc. Am. A 13, 517–522 (1996).
  6. R. Avila, A. Ziad, J. Borgnino, F. Martin, A. Agabi, and A. Tokovinin, “Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment,” J. Opt. Soc. Am. A 14, 3070–3082 (1997).
  7. C. Coulman, J. Vernin, Y. Coqueugniot, and J. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index structure profiles,” Appl. Opt. 27, 155–160 (1988).
  8. J. Borgnino, “Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy,” Appl. Opt. 29, 1863–1865 (1990).
  9. V. Lukin, E. Nosov, and B. Fortes, “Effective outer scale of atmospheric turbulence,” Opt. Atmosferi 10, 162–171 (1958).
  10. F. Martin, A. Tokovinin, A. Agabi, J. Borgnino, and A. Ziad, “G.S.M.: a grating scale monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements,” Astron. Astrophys. Suppl. Ser. 108, 173–180 (1994).
  11. M. Sarazin and F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  12. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1988), Vol. 26, pp. 351–391.
  13. J. Borgnino, F. Martin, and A. Ziad, “Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations,” Opt. Commun. 91, 267–279 (1992).
  14. R. Lutomirski and H. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–486 (1971).
  15. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf ed., Elsevier, Amsterdam, 1981), Vol. 19, 281–376.
  16. J. Bendat and A. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New-York, 1971).
  17. B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 1983).
  18. H. Martin, “Image motion as a measure of seeing quality,” Publ. Astronom. Soc. Pac. 99, 1360–1370 (1987).
  19. A. Consortini and L. Ronchi, “Choice of the model of atmospheric turbulence,” Appl. Opt. 5, 1205–1211 (1972).
  20. V. P. Lukin, “Optical Measurements of the outer scale of the atmospheric turbulence,” Atmos. Oceanic Opt. 4, 229–242 (1992).
  21. V. P. Lukin, “Intercomparison of models of the atmospheric turbulence spectrum,” Atmos. Oceanic Opt. 6, 628–631 (1993).
  22. V. Voitsekhovich, “Outer scale of turbulence: comparison of different models,” J. Opt. Soc. Am. A 12, 1346–1353 (1995).
  23. C. Gardner, “Effects of random path fluctuations on the accuracy of laser ranging systems,” Appl. Opt. 15, 2539–2545 (1976).
  24. J. Krause-Polstorff, A. Edmund, and L. W. Donald, “Instrument comparison: corrected stellar scintillometer versus isoplanometer,” Appl. Opt. 32, 4051–4057 (1993).
  25. G. Loos and C. Hogge, “Turbulence of the upper atmosphere and isoplanatism,” Appl. Opt. 18, 2654–2661 (1979).
  26. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1978), pp. 1–6.
  27. R. Avila, J. Vernin, and S. Cuevas, “Turbulence profiles with generalized scidar at San Pedro Màrtir Observatory and isoplanatism studies,” Publ. Astron. Soc. Pacific 110, 1106–1116 (1998).
  28. V. Kornilov, “The four-channel stellar photometer with dichroic beam-splitter,” Baltic Astron. 7, 513–524 (1998).
  29. R. Conan, A. Ziad, R. Avila, A. Tokovinin, F. Martin, and J. Borgnino, “Spatio-temporal analysis of the wavefront with the GSM,” in Topical Meeting on Astronomy with Adaptive Optics, Present Results and Future Programs, D. Bonaccini, ed. (European Southern Observatory, Garching-bei-München, Germany, 1998), pp. 133–142.
  30. F. Roddier, J. Gilli, and G. Lund, “On the origin of speckle boiling and its effects in stellar speckle interferometry,” J. Opt. (Paris) 13, 263–271 (1982).
  31. A. Tokovinin, “A new method to measure the atmospheric image quality,” Astron. Lett. 24, 768–771 (1998).
  32. F. Martin, A. Tokovinin, A. Ziad, R. Conan, J. Borgnino, R. Avila, A. Agabi, and M. Sarazin, “First statistical data on wavefront outer scale at La Silla Observatory from the GSM Instrument,” Astron. Astrophys. 336, L49–L52 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited