OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5426–5445

Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance

Aniceto Belmonte  »View Author Affiliations


Applied Optics, Vol. 39, Issue 30, pp. 5426-5445 (2000)
http://dx.doi.org/10.1364/AO.39.005426


View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To analyze the effects of atmospheric refractive turbulence on coherent lidar performance in a realistic way it is necessary to consider the use of simulations of beam propagation in three-dimensional random media. The capability of the split-step solution to simulate the propagation phenomena is shown, and the limitations and numerical requirements for a simulation of given accuracy are established. Several analytical theories that describe laser beam spreading, beam wander, coherence diameters, and variance and autocorrelation of the beam intensity are compared with results from simulations. Although the analysis stems from a study of coherent lidar performance, the conclusions of the method are applicable to other areas related to beam propagation in the atmosphere.

© 2000 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar
(030.1670) Coherence and statistical optics : Coherent optical effects

History
Original Manuscript: November 15, 1999
Revised Manuscript: May 16, 2000
Published: October 20, 2000

Citation
Aniceto Belmonte, "Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance," Appl. Opt. 39, 5426-5445 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-30-5426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Belmonte, B. J. Rye, “Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000). [CrossRef]
  2. A. Belmonte, B. J. Rye, W. A. Brewer, R. M. Hardesty, “Coherent lidar returns in turbulent atmosphere from simulation of beam propagation,” presented at the Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mount Hood, Ore., 28 June–2 July 1999.
  3. D. L. Fried, “Optical heterodyne detection on an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–66 (1967). [CrossRef]
  4. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  5. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981); erratum 20, 1502 (1981).
  6. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  7. B. J. Rye, “Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  8. V. A. Banakh, V. L. Mironov, LIDAR in a Turbulent Atmosphere (Artech, Dedham, Mass., 1987).
  9. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  10. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  11. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  12. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  13. J. Strohbehn, S. Clifford, “Polarization and angle-of-arrival fluctuations for a plane wave propagated through a turbulent medium,” IEEE Trans. Antennas Propag. AP-15, 416–421 (1967). [CrossRef]
  14. V. Tatarski, The Effect of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).
  15. S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, Berlin, 1978), pp. 9–43. [CrossRef]
  16. J. W. Strohbehn, “Modern theories in the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, Berlin, 1978), pp. 44–106.
  17. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 790–811 (1975). [CrossRef]
  18. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975). [CrossRef]
  19. R. G. Frehlich, “Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence,” J. Opt. Soc. Am. A 4, 360–366 (1987). [CrossRef]
  20. R. Dashen, G.-Y. Wang, “Intensity fluctuation for waves behind a phase screen: a new asymptotic scheme,” J. Opt. Soc. Am. A 10, 1219–1225 (1993). [CrossRef]
  21. G.-Y. Wang, R. Dashen, “Intensity moments for waves in random media: three-order standard asymptotic calculation,” J. Opt. Soc. Am. A 10, 1226–1232 (1993). [CrossRef]
  22. R. Dashen, G.-Y. Wang, S. M. Flatté, C. Bracher, “Moments of intensity and log intensity: new asymptotic results for waves in power-law media,” J. Opt. Soc. Am. A 10, 1233–1242 (1993). [CrossRef]
  23. R. F. Lutomirski, H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  24. H. T. Yura, “Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,” Appl. Opt. 11, 1399–1406 (1971). [CrossRef]
  25. F. D. Tappert, “The parabolic approximation method,” in Wave Propagation and Underwater Acoustics, J. B. Keller, J. S. Papadakis, eds., Vol. 70 of Lecture Notes in Physics (Springer-Verlag, New York, 1977). [CrossRef]
  26. J. Martin, “Simulation of wave propagation in random media: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds., Vol. PM09 of Press Monographs (SPIE Press, Bellingham, Wash., 1993).
  27. D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983). [CrossRef]
  28. M. I. Charnotskii, J. Gozani, V. I. Tatarskii, V. U. Zavorotny, “Wave propagation theories in random media based on the path-integral approach,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1993), Vol. 32, pp. 203–265. [CrossRef]
  29. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978). [CrossRef]
  30. R. J. Hill, S. F. Clifford, “Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation,” J. Opt. Soc. Am. 68, 892–899 (1978). [CrossRef]
  31. J. H. Churnside, “A spectrum of refractive turbulence in the turbulent atmosphere,” J. Mod. Opt. 37, 13–16 (1990). [CrossRef]
  32. L. C. Andrews, “An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere,” J. Mod. Opt. 39, 1849–1853 (1992). [CrossRef]
  33. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am. A 11, 2719–2726 (1994). [CrossRef]
  34. M. Spivack, B. J. Unscinski, “The split-step solution in random wave propagation,” J. Comput. Appl. Math. 27, 349–361 (1989). [CrossRef]
  35. M. Spivack, “Accuracy of the moments from simulation of waves in random media,” J. Opt. Soc. Am. A 7, 790–793 (1990). [CrossRef]
  36. W. A. Coles, J. P. Filice, R. G. Frehlich, M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995). [CrossRef] [PubMed]
  37. R. F. Lutomirski, H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  38. L. D. Dickson, “Characteristics of a propagating Gaussian beam,” Appl. Opt. 9, 1854–1861 (1970). [CrossRef] [PubMed]
  39. N. Rodier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  40. C. Schwartz, G. Baum, E. N. Ribak, “Turbulence-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994). [CrossRef]
  41. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  42. A. Belmonte, A. Comeron, J. A. Rubio, J. Bara, E. Fernandez, “Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver,” Appl. Opt. 36, 8632–8638 (1997). [CrossRef]
  43. F. Bunkin, K. Gochelashvily, “Spreading of a light beam in a turbulent medium,” Radiophys. Quantum Electron. 13, 811–821 (1970). [CrossRef]
  44. R. Fante, “Mutual coherence function and frequency spectrum of a laser beam propagating through atmospheric turbulence,” J. Opt. Soc. Am. 64, 592–598 (1974). [CrossRef]
  45. A. S. Gurchiv, V. I. Tatarskii, “Coherent and intensity fluctuations of light in the turbulent media,” Radio Sci. 10, 3–14 (1975). [CrossRef]
  46. H. T. Yura, “Short-term average optical-beam spread in a turbulent medium,” J. Opt. Soc. Am. 63, 567–572 (1973). [CrossRef]
  47. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1978), Vol. 6, pp. 1–56.
  48. V. L. Mironov, V. V. Nosov, “On the theory of spatially limited light beam displacements in a randomly inhomogeneous medium,” J. Opt. Soc. Am. 64, 516–518 (1977).
  49. L. C. Andrews, W. B. Miller, J. C. Ricklin, “Spatial coherence of a Gaussian-beam wave in weak and strong optical turbulence,” J. Opt. Soc. Am. A 11, 1653–1660 (1994). [CrossRef]
  50. H. T. Yura, “Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,” Appl. Opt. 11, 1399–1406 (1972). [CrossRef] [PubMed]
  51. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  52. M. I. Charnotskii, “Asymptotic analysis of finite-beam scintillations in a turbulent medium,” Waves Random Media 4, 243–273 (1994). [CrossRef]
  53. L. C. Andrews, R. L. Phillips, C. Y. Hopen, M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A 16, 1417–1429 (1999). [CrossRef]
  54. R. S. Lawrence, J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970). [CrossRef]
  55. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  56. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993). [CrossRef]
  57. K. S. Gochelashvily, V. I. Shishov, “Multiple scattering of light in a turbulent medium,” Opt. Acta 18, 767–777 (1971). [CrossRef]
  58. K. S. Gochelashvily, V. G. Pevgov, V. I. Shishov, “Saturation of fluctuations of the intensity of laser radiation at large distances in a turbulent atmosphere (Fraunhofer zone of transmitter),” Sov. J. Quantum Electron. 4, 632–637 (1974). [CrossRef]
  59. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1350–1356 (1966). [CrossRef]
  60. D. L. Fried, H. T. Yura, “Telescope-performance reciprocity for propagation in a turbulent medium,” J. Opt. Soc. Am. 62, 600–602 (1972). [CrossRef]
  61. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61, 492–495 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited