OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5518–5530

Error analysis of a heterodyne submillimeter sounder for the detection of stratospheric trace gases

Quintus L. Kleipool, Nicholas D. Whyborn, Frank P. Helmich, Hans Schrijver, Albert P. H. Goede, Jos Lelieveld, and Klaus Künzi  »View Author Affiliations

Applied Optics, Vol. 39, Issue 30, pp. 5518-5530 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heterodyne submillimeter detection techniques represent an important development in the field of remote sensing of atmospheric composition. The disclosure of this wavelength region by new low-noise detectors and multichannel high-resolution spectrometers leads to expectations of improved accuracy and vertical resolution of the vertical composition profiles derived from these measurements. Because of the low-noise levels of newly developed receivers, special care is required to ensure that fundamental limitations of the components used do not contribute to systematic errors exceeding the random errors. Operated in an upward-looking geometry, the sensitivity of the retrieval algorithm to noise and instrumental errors can be rather high, and hence instrumental limitations could induce large uncertainties in the derived atmospheric information. Instrumental uncertainties typical for a passive heterodyne sounder are quantified, and their effects on the accuracy of the derived vertical mixing ratio profiles are presented.

© 2000 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.4950) Atmospheric and oceanic optics : Ozone
(040.2840) Detectors : Heterodyne
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: January 18, 2000
Revised Manuscript: July 17, 2000
Published: October 20, 2000

Quintus L. Kleipool, Nicholas D. Whyborn, Frank P. Helmich, Hans Schrijver, Albert P. H. Goede, Jos Lelieveld, and Klaus Künzi, "Error analysis of a heterodyne submillimeter sounder for the detection of stratospheric trace gases," Appl. Opt. 39, 5518-5530 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Waters, W. Read, L. Froidevaux, T. Lungu, V. Perun, R. Stachnik, R. Jarnot, R. Cofield, E. Fishbein, D. Flower, J. Burke, J. Hardy, L. Nakamura, B. Ridenoure, Z. Shippony, R. Thurstans, L. Avallone, D. Toohey, R. de Zafra, D. Shindell, “Validation of uars microwave limb sounder clo measurements,” J. Geophys. Res. 101, D6, 10091–10127 (1996).
  2. J. de la Noë, O. Lezeaux, G. Guillemin, R. Laqué, P. Baron, P. Ricaud, “A ground-based microwave radiometer dedicated to stratospheric ozone monitoring,” J. Geophys. Res. 103, D17, 22147–22161 (1998).
  3. U. Raffalski, U. Klein, J. Langer, G. Schwaab, B-M. Sinnhuber, K. Künzi, “Stratospheric O3 and chlorine monoxide and tropospheric water vapor,” in Proceedings of the 18th Quadrennial Ozone Symposium, R. D. Bojkov, G. Visconti, eds. (International Ozone Commission, L’Aquila, Italy, 1996), pp. 579–582.
  4. L. K. Emmons, D. T. Shindell, J. M. Reeves, R. L. de Zafra, “Stratospheric ClO profiles from McMurdo Station, Antartica, spring 1992,” J. Geophys. Res. 100, D2, 3049–3055 (1995).
  5. M. Kuntz, G. Kopp, H. Berg, G. Hochschild, R. Krupa, “Joint retrieval of atmospheric constituent profiles from ground-based millimetre wave measurements: ClO, HNO3, N2O, and O3,” J. Geophys. Res. 104, D11, 13981–13992 (1999).
  6. D. T. Shindell, R. L. de Zafra, “Chlorine monoxide in the Antarctic spring vortex,” J. Geophys. Res. 101, D1, 1475–1487 (1996).
  7. Ph. Ricaud, J. de la Noë, R. Lauqué, “Analysis of stratospheric ClO measurements recorded by a ground-based radiometer located at the Plateau de Bure, France,” J. Geophys. Res. 102, D1, 1423–1439 (1997).
  8. J. Mees, S. Crewell, H. Nett, G. de Lange, H. van der Stadt, J. Kuipers, R. Panhuyzen, “ASUR—An airborne SIS receiver for atmospheric measurements of trace gases at 625 to 760 GHz,” IEEE Trans. Microwave Theory Tech. 43, 2543–2548 (1995). [CrossRef]
  9. Q. L. Kleipool, “Characterization and application of a sub-millimeter atmospheric sounder,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 2000).
  10. G. Evans, RF Radiometer Handbook (Artec House, Norwood, Mass., 1977).
  11. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–231 (1966). [CrossRef]
  12. J. R. Birch, “The far infrared optical constants of some common polymers,” (National Physical Laboratory, Teddington, Middlesex, UK, 1991).
  13. J. R. Birch, “An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near-millimeter wavelengths,” (National Physical Laboratory, Teddington, Middlesex, UK, 1991).
  14. J. R. Birch, K. Ping, “Temperature dependence of the FIR optical constants of low density polyethylene,” Infrared Phys. Technol. 36, 673–677 (1995). [CrossRef]
  15. N. Keen, R. Spurett, R. Wylde, “An absolute blackbody source for radiometer calibration at sub-millimeter wavelengths,” in Proceedings of the ESA Workship on Millimeter Wave Techniques and Applications (European Space Research and Technology Center, Noordwijk, The Netherlands, 1995), pp. 4.2.1–4.2.10.
  16. K. Chance, K. W. Jucks, D. G. Johnson, W. A. Traub, “The Smithsonian Astrophysical Observatory database SAO92,” J. Quant. Spectrosc. Radiat. Transfer 52, 447–457 (1994). [CrossRef]
  17. R. L. Poynter, H. M. Pickett, E. Cohen, “Submillimeter, millimeter, and microwave spectral line catalog,” Appl. Opt. 24, 2235–2240 (1984). [CrossRef]
  18. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967). [CrossRef]
  19. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  20. C. D. Rodgers, “Characterization and error analysis of profiles retrieved from remote sounding measurements,” J. Geophys. Res. 95, D5, 5587–5595 (1990).
  21. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and PracticeWorld Scientific, Singapore, 2000).
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, England, 1986).
  23. G. W. Hart, Multidimensional Analysis (Springer-Verlag, New York, 1995). [CrossRef]
  24. J. Brillet, “A theoretical study of ozone measurements made with ground-based microwave sensors,” J. Geophys. Res. 94, D10, 12833–12850 (1989).
  25. M. Kuntz, G. Hochschild, R. Krupa, “Retrieval of ozone mixing ratio profiles from ground-based millimeter wave measurements disturbed by standing waves,” J. Geophys. Res. 102, D18, 21965–21975 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited