OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5579–5589

In situ combustion measurements of CO with diode-laser absorption near 2.3 µm

Jian Wang, Mikhail Maiorov, Douglas S. Baer, Dmitri Z. Garbuzov, John C. Connolly, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 39, Issue 30, pp. 5579-5589 (2000)
http://dx.doi.org/10.1364/AO.39.005579


View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In situ measurements of CO concentration were recorded with tunable diode-laser absorption spectroscopy techniques in both the exhaust and the immediate post-flame regions of an atmospheric-pressure flat-flame burner operating on ethylene air. Two room-temperature cw single-mode InGaAsSb/AlGaAsSb diode lasers operating near 2.3 µm were tuned over individual transitions in the CO first overtone band (v′ = 2 ← v″ = 0) to record high-resolution absorption line shapes in the exhaust duct [79 cm above the burner, ∼470 K; R(15) transition at 4311.96 cm-1] and the immediate postflame zone [1.5 cm above the burner, 1820–1975 K; R(30) transition at 4343.81 cm-1]. The CO concentration was determined from the measured absorption and the gas temperature, which was monitored with type-S thermocouples. For measurements in the exhaust duct, the noise-equivalent absorbance was ∼3 × 10-5 (50-kHz detection bandwidth, 50-sweep average, 0.1-s total measurement time), which corresponds to a CO detection limit of 1.5 ppm m at 470 K. Wavelength modulation spectroscopy techniques were used to improve the detection limit in the exhaust to ∼0.1 ppm m (∼500-Hz detection bandwidth, 20-sweep average, 0.4-s total measurement time). For measurements in the immediate postflame zone, the measured CO concentrations in the fuel-rich flames were in good agreement with chemical equilibrium predictions. These experiments demonstrate the utility of diode-laser absorption sensors operating near 2.3 µm for in situ combustion emission monitoring and combustion diagnostics.

© 2000 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: February 8, 2000
Revised Manuscript: June 5, 2000
Published: October 20, 2000

Citation
Jian Wang, Mikhail Maiorov, Douglas S. Baer, Dmitri Z. Garbuzov, John C. Connolly, and Ronald K. Hanson, "In situ combustion measurements of CO with diode-laser absorption near 2.3 µm," Appl. Opt. 39, 5579-5589 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-30-5579


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Brouwer, B. A. Ault, J. E. Bobrow, G. S. Samuelsen, “Active control for gas turbine combustors,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1087–1092.
  2. S. Fujii, S. Tomiyama, Y. Nogami, M. Shirai, H. Ase, T. Yokoyama, “Fuzzy combustion control for reducing both CO and NOx from flue gas of refuse incineration furnace,” JSME Int. J. Ser. C 40, 279–284 (1997). [CrossRef]
  3. J. D. Kilgroe, L. P. Nelson, P. J. Schindler, W. S. Lanier, “Combustion control of organic emissions from municipal waste combustors,” Combust. Sci. Technol. 74, 223–244 (1990). [CrossRef]
  4. U.S. Government, Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.
  5. U.S. Government, Code of Federal Regulations, 40CFR264/266, Office of the Federal Register, Washington, D.C.
  6. J. A. Jahnke, Continuous Emission Monitoring (Van Nostrand Reinhold, New York, 1993), pp. 31–58.
  7. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981). [CrossRef]
  8. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, “Experimental and numerical comparison of extractive and in situ laser measurements of nonequilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995). [CrossRef]
  9. U.S. Government, “Method 10: determination of carbon monoxide emissions from stationary sources,” Reference Methods promulgated under Code of Federal Regulations, 40CFR60, Office of the Federal Register, Washington, D.C.
  10. P. L. Varghese, R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981). [CrossRef]
  11. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082–6089 (1993). [CrossRef]
  12. R. G. Daniel, K. L. Mcnesby, A. W. Miziolek, “Application of tunable diode laser diagnostics for temperature and species concentration profiles of inhibited low-pressure flames,” Appl. Opt. 35, 4018–4025 (1996). [CrossRef] [PubMed]
  13. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999). [CrossRef]
  14. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  15. D. Garbuzov, R. Menna, M. Maiorov, H. Lee, V. Khalfin, L. Dimarco, D. Capewell, R. Martinelli, G. Belenky, J. Connolly, “2.3 to 2.7-µm room temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers,” in In-Plane Semiconductor Lasers III, H. K. Chou, P. S. Zory, eds., Proc. SPIE3628, 124–129 (1999). [CrossRef]
  16. M. Maiorov, J. Wang, D. Baer, H. Lee, G. Belenky, R. Hanson, J. Connolly, D. Garbuzov, “New room temperature cw InGaAsSb/AlGaAsSb QW ridge diode lasers and their Application to CO measurements near 2.3 µm,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 62–70 (1999). [CrossRef]
  17. J. S. Major, J. S. Osinski, D. F. Welch, “8.5 W cw 2.0-µm InGaAsP laser diodes,” Electron. Lett. 29, 2112–2214 (1993). [CrossRef]
  18. H. K. Choi, G. W. Turner, S. I. Eglash, “High-power GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 µm,” IEEE Photon. Technol. Lett. 6, 7–9 (1994). [CrossRef]
  19. D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, R. Menna, J. Connolly, “2.0–2.4 µm high-power broaden waveguide SCH-QW InGaAsSb/AlGaAsSb diode lasers,” in CLEO/EUROPE, European Quantum Electronics Conference, Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), paper CWL2.
  20. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  21. D. Bradley, K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968). [CrossRef]
  22. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurements of CO, CO2, H2O, and temperature using diode laser absorption sensors,” in Twenty-Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 2000).
  23. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  24. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  25. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef] [PubMed]
  26. H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994). [CrossRef]
  27. J.-P. Bouanich, C. Brodbeck, “Mesure des largeurs et des deplacements des raies de la bande 0 → 2 de CO autoperturbe et perturbe par N2, O2, H2, HCl, NO et CO2,” J. Quant. Spectrosc. Radiat. Transfer 13, 1–7 (1973). [CrossRef]
  28. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000-K temperature range,” Appl. Opt. 27, 3063–3065 (1988). [CrossRef] [PubMed]
  29. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989). [CrossRef]
  30. P. L. Varghese, R. K. Hanson, “Room temperature measurements of collision widths of CO lines broadened by H2O,” J. Mol. Spectrosc. 88, 234–235 (1981). [CrossRef]
  31. U.S. EPA Office of Air and Radiation, “1997 national air quality: status and trends” (1998), http://www.epa.gov/oar/aqtrnd97/brochure/co.html .
  32. A. Brock, N. Mina-Camilde, C. Manzanares, “Vibrational spectroscopy of C-H bonds of C2H4 liquid and C2H4 in liquid argon solutions,” J. Phys. Chem. 98, 4800–4808 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited