OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5590–5600

Line Shapes in Triple-Resonance Ionization Spectroscopy

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt  »View Author Affiliations

Applied Optics, Vol. 39, Issue 30, pp. 5590-5600 (2000)

View Full Text Article

Acrobat PDF (2357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Line shapes in high-resolution triple-resonance ionization spectroscopy have been calculated and compared with experimental measurements on the 4s21S0→ 4s4p1P1 → 4s4d1D2 → 4snf1F3→ Ca+ system of calcium. Calculations based on the density matrix formalism integrated the fundamental equations over experimental atomic angular and velocity distributions and laser intensity profiles. The measurements reveal and confirm all predicted structures arising from the complex coupling of four atomic states with three laser fields and the Doppler distribution of the atomic ensemble. Effects of different laser beam geometries on the line shapes have been investigated. The agreement between calculated and experimental spectra is generally good over a dynamic range of 10 orders of magnitude. Thus these calculations can accurately predict optical isotopic selectivity in multistep resonance ionization, with a value of Sopt ~ 1010 expected for detection of the ultratrace isotope 41Ca.

© 2000 Optical Society of America

OCIS Codes
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6350) Spectroscopy : Spectroscopy, ionization
(300.6410) Spectroscopy : Spectroscopy, multiphoton

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, "Line Shapes in Triple-Resonance Ionization Spectroscopy," Appl. Opt. 39, 5590-5600 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. W. Beekman, T. A. Callcott, S. D. Kramer, E. T. Arakawa, and G. S. Hurst, “Resonance ionization source for mass spectroscopy,” Int. J. Mass Spectrom. Ion Phys. 34, 89–97 (1980).
  2. H.-J. Kluge, B. A. Bushaw, G. Passler, K. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius J. Anal. Chem. 350, 323–329 (1994).
  3. M. G. Payne, L. Deng, and N. Thonnard, “Applications of resonance ionization mass spectrometry,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
  4. K. Wendt, K. Blaum, B. A. Bushaw, C. Grüning, R. Horn, G. Huber, J. V. Kratz, P. Kunz, P. Müller, W. Nörtershäuser, M. Nunnemann, G. Passler, A. Schmitt, N. Trautmann, and A. Waldek, “Recent developments in and applications of resonance ionization mass spectrometry,” Fresenius J. Anal. Chem. 364, 471–477 (1999).
  5. B. A. Bushaw, “High-resolution laser-induced ionization spectroscopy,” Prog. Analyt. Spectrosc. 12, 247–276 (1989).
  6. B. A. Bushaw, “Attogram measurement of rare isotopes by cw resonance ionization mass spectrometry,” in Proceedings of the Sixth International Symposium on Resonance Ionization Spectroscopy and its Applications 1992, C. M. Miller and J. E. Parks, eds. (Institute of Physics, London, 1992), Vol. 128, pp. 31–36.
  7. L. Monz, R. Hohmann, H.-J. Kluge, S. Kunze, J. Lantzsch, E.-W. Otten, G. Passler, P. Senne, J. Stenner, K. Stratmann, K. Wendt, K. Zimmer, G. Herrmann, N. Trautmann, and K. Walter, “Fast, low-level detection of strontium-90 and strontium-89 in environmental samples by collinear resonance ionization spectroscopy,” Spectrochim. Acta Part B 48, 1655–1671 (1993).
  8. B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta Part B 52, 1839–1854 (1997).
  9. P. Müller, B. A. Bushaw, K. Blaum, W. Nörtershäuser, A. Schmitt, N. Trautmann, and K. Wendt, “Ultratrace determination of the long-lived isotope 41Ca by narrowband cw-RIMS,” in Proceedings of the Ninth International Symposium on Resonance Ionization Spectroscopy and its Applications 1998, J. C. Vickerman, I. Lyon, N. P. Lockyer, and J. E. Parks, eds. (American Institute of Physics, College Park, Md., 1998), Vol. 454, pp. 73–78.
  10. K. Wendt, G. K. Bhowmick, B. A. Bushaw, G. Herrmann, J. V. Kratz, J. Lantzsch, P. Müller, W. Nörtershäuser, E.-W. Otten, R. Schwalbach, U.-A. Seibert, N. Trautmann, and A. Waldek, “Rapid trace analysis of 89,90Sr in environmental samples by collinear laser resonance ionization mass spectrometry,” Radiochim. Acta 79, 183–190 (1997).
  11. B. A. Bushaw, F. Juston, W. Nörtershäuser, N. Trautmann, P. Voss-de Haan, and K. Wendt, “Multiple resonance RIMS measurements of calcium isotopes using diode lasers,” in Proceedings of the Eighth International Symposium on Resonance Ionization Spectroscopy and its Applications 1996, N. Winograd and J. E. Parks, eds. (American Institute of Physics, College Park, Md., 1997), Vol. 388, pp. 115–118.
  12. M. Paul, I. Ahmad, and W. Kutschera, “Half-life of 41Ca,” Z. Phys. A 340, 249–254 (1991).
  13. D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. B 52, 572–582 (1990).
  14. S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266–270 (1997).
  15. W. Rühm, K. Kato, G. Korschinek, H. Morinaga, and E. Nolte, “36-Cl and 41-Ca depth profiles in a Hiroshima granite stone and the dosimetry system 1986,” Z. Phys. A 341, 235–238 (1992).
  16. G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature (London) 277, 42–44 (1979).
  17. K. Blaum, P. Geppert, P. Müller, W. Nörtershäuser, E. W. Otten, A. Schmitt, N. Trautmann, K. Wendt, and B. A. Bushaw, “Properties and performance of a quadrupole mass filter used for resonance ionization mass spectrometry,” Int. J. Mass Spectrom. Ion Processes 181, 67–87 (1998).
  18. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992).
  19. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981).
  20. R. M. Whitley and C. R. Stroud, Jr., “Double optical resonance,” Phys. Rev. A 14, 1498–1513 (1976).
  21. M. S. Feld and A. Javan, “Laser-induced line-narrowing effects in coupled Doppler-broadened transitions,” Phys. Rev. 177, 540–562 (1969).
  22. T. Hänsch and P. Toschek, “Theory of a three-level gas laser amplifier,” Z. Phys. 236, 213–244 (1970).
  23. R. Salomaa and S. Stenholm, “Two-photon spectroscopy: effects of a resonant intermediate state,” J. Phys. B 8, 1795–1805 (1975).
  24. R. P. Lucht, R. Trebino, and L. A. Rahn, “Resonant multiwave-mixing spectra of gas-phase sodium: nonperturbative calculations,” Phys. Rev. A 45, 8209–8227 (1992).
  25. T. A. Reichardt and R. P. Lucht, “Theoretical calculation of lineshapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
  26. P. Lambropoulos and A. Lyras, “Theory of resonant ionization by broad-band radiation in the determination of isotopic abundances,” Phys. Rev. A 40, 2199–2202 (1989).
  27. O. R. Jones, R. M. Perks, and H. H. Telle, “Isotope specific resonance ionization mass spectrometry using continuous-wave diode and pulsed dye lasers for trace detection and enrichment of elements of environmental and medical importance, exemplified for strontium (Sr). Part I: Theoretical modelling,” Rapid. Commun. Mass Spectrom. 10, 1725–1738 (1996).
  28. B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta Part B 54, 321–322 (1999).
  29. P. Müller, B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Isotope shifts and hyperfine structure in calcium 4snp 1P1 and 4snf F Rydberg states,” Eur. J. Phys. D 12, 33–44 (2000).
  30. W. Nörtershäuser, N. Trautmann, K. Wendt, and B. A. Bushaw, “Isotope shifts and hyperfine structure in the 4s21S0 → 4s4p 1P1 → 4s4d 1D2 transitions of stable calcium isotopes and calcium-41,” Spectrochim. Acta Part B 53, 709–721 (1998).
  31. B. A. Bushaw, B. D. Cannon, G. K. Gerke, and T. J. Whitaker, “Laser-enhanced electron-impact ionization spectroscopy,” Opt. Lett. 11, 422–424 (1986).
  32. S. M. Jaffe, M. Rochon, and W. M. Yen, “Increasing the frequency stability of single-frequency lasers,” Rev. Sci. Instrum. 64, 2475–2481 (1993).
  33. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, “A computer-based digital feedback control of frequency drift of multiple lasers,” Rev. Sci. Instrum. 69, 3737–3740 (1998).
  34. J. Mitroy, “Energy levels and oscillator strengths for neutral calcium,” J. Phys. B 26, 3703–3718 (1993).
  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1997).
  36. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited