OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5609–5619

Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers

Georges Durry, Ivan Pouchet, Nadir Amarouche, Théodore Danguy, and Gerard Megie  »View Author Affiliations


Applied Optics, Vol. 39, Issue 30, pp. 5609-5619 (2000)
http://dx.doi.org/10.1364/AO.39.005609


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectromètre à Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH4 and H2O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is ∼10-4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH4 absorption spectra measured in the 1.653-µm region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situP and T measurements.

© 2000 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: March 9, 2000
Revised Manuscript: July 5, 2000
Published: October 20, 2000

Citation
Georges Durry, Ivan Pouchet, Nadir Amarouche, Théodore Danguy, and Gerard Megie, "Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers," Appl. Opt. 39, 5609-5619 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-30-5609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.
  2. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4 and HNO3,” Appl. Opt. 33, 454–472 (1994). [CrossRef] [PubMed]
  3. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesh, E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl and NO2 from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999). [CrossRef]
  4. C. R. Webster, R. D. May, “In-situ stratospheric measurements of CH4, 13CH4, N2O, and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992). [CrossRef]
  5. H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990). [CrossRef]
  6. C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Active nitrogen partitioning and the nighttime formation of N2O5 in the stratosphere: simultaneous in situ measurements of NO, NO2, HNO3, O3 and N2O using the BLISS diode laser spectrometer,” J. Geophys. Res. 95, 13851–13866 (1990). [CrossRef]
  7. F.-J. Lübken, F. Dingler, H. von Lucke, J. Anders, W. J. Riedel, H. Wolf, “MASERATI: a rocketborne tunable diode laser absorption spectrometer,” Appl. Opt. 38, 5338–5349 (1999). [CrossRef]
  8. R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998). [CrossRef]
  9. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994). [CrossRef]
  10. P. Cancio, C. Corsi, F. S. Pavone, R. U. Martinelli, R. J. Menna, “Sensitive detection of ammonia absorption by using a 1.65 µm distributed feedback InGaAsP diode laser,” Infrared Phys. Technol. 36, 987–993 (1995). [CrossRef]
  11. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, D. J. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998). [CrossRef]
  12. G. Durry, G. Megie, “Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999). [CrossRef]
  13. C. P. Rinsland, M. R. Gunson, R. J. Salawitch, M. J. Newchurch, R. Zander, M. M. Abbas, M. C. Abrams, G. L. Manney, H. A. Michelsen, A. Y. Chang, A. Goldman, “ATMOS measurements of H2O + 2CH4 and total reactive nitrogen in the November 1994 Antarctic stratosphere: dehydration and denitrification in the vortex,” Geophys. Res. Lett. 23, 2397–2400 (1996). [CrossRef]
  14. M. M. Abbas, H. A. Michelsen, M. R. Gunson, M. C. Abrams, M. J. Newchurch, R. J. Salawitch, A. Y. Chang, A. Goldman, F. W. Irion, G. L. Manney, E. J. Moyer, R. Nagaraju, C. P. Rinsland, G. P. Stiller, R. Zander, “Seasonal variations of water vapor in the lower stratosphere inferred from ATMOS/ATLAS-3 measurements of H2O and CH4,” Geophys. Res. Lett. 23, 2401–2404 (1996). [CrossRef]
  15. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  16. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 29, 3240–3249 (1995). [CrossRef]
  17. G. D. Houser, E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994). [CrossRef] [PubMed]
  18. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997). [CrossRef] [PubMed]
  19. P. C. D. Hobbs, “Reaching the shot noise limit for $10,” Opt. Photon. News 2(4), 17–23 (1991). [CrossRef]
  20. P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1991). [CrossRef]
  21. J. Altmann, R. Baumgart, D. C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981). [CrossRef] [PubMed]
  22. D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523 (1964). [CrossRef]
  23. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883 (1965). [CrossRef]
  24. G. Durry, G. Megie, “In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 µm,” Appl. Opt. 39, 5601–5608 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited