OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5620–5631

SeaWiFS transfer-to-orbit experiment

Robert A. Barnes, Robert E. Eplee, Jr., Stuart F. Biggar, Kurtis J. Thome, Edward F. Zalewski, Philip N. Slater, and Alan W. Holmes  »View Author Affiliations


Applied Optics, Vol. 39, Issue 30, pp. 5620-5631 (2000)
http://dx.doi.org/10.1364/AO.39.005620


View Full Text Article

Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of an experiment designed to measure the changes in the radiometric calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from the time of its manufacture to the time of the start of on-orbit operations. The experiment uses measurements of the Sun at the manufacturer’s facility to predict the instrument outputs during solar measurements immediately after launch. Because an onboard diffuser plate is required for these measurements, the experiment measures changes in the instrument–diffuser system. There is no mechanism in this experiment to separate changes in the diffuser from changes in the instrument. For the eight SeaWiFS bands, the initial instrument outputs on orbit averaged 0.8% higher than predicted with a standard deviation of 0.9%. The greatest difference was 2.1% (actual output higher than predicted) for band 3. The estimated uncertainty for the experiment is 3%. Thus the transfer-to-orbit experiment shows no changes in the radiometric sensitivities of the SeaWiFS bands—at the 3% level—from the completion of the instrument’s manufacture to its insertion into orbit.

© 2000 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6550) Spectroscopy : Spectroscopy, visible

Citation
Robert A. Barnes, Robert E. Eplee, Jr., Stuart F. Biggar, Kurtis J. Thome, Edward F. Zalewski, Philip N. Slater, and Alan W. Holmes, "SeaWiFS transfer-to-orbit experiment," Appl. Opt. 39, 5620-5631 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-30-5620


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. A. Barnes and C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada and J. B. Lurie, eds., Proc. SPIE 3870, 214–227 (1999).
  2. R. A. Barnes and A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE 1939, 224–232 (1993).
  3. J. J. Hsia and V. R. Weidner, “NBS 45-degree/normal reflectometer for absolute reflectance factors,” Metrologia 17, 97–102 (1981).
  4. V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
  5. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, and T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md. 1994).
  6. B. C. Johnson, E. A. Early, R. E. Eplee, Jr., R. A. Barnes, and R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999–206892, Vol. 4, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  7. C. Wehrli, “Extraterrestrial solar spectrum,” Publ. 615 (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).
  8. R. A. Barnes and R. E. Eplee, Jr., “The SeaWiFS solar diffuser,” in SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566, Vol. 39, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1996).
  9. S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, and R. A. Barnes, “Second SeaWiFS preflight solar radiation-based calibration experiment,” in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566, Vol. 27, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  10. R. A. Barnes, R. E. Eplee, Jr., S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, and A. W. Holmes, The SeaWiFS Solar Radiation-Based Calibration and the Transfer-to-Orbit Experiment, NASA Tech. Memo. 1999–206892, Vol. 5, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 1999).
  11. H. Neckel and D. Labs, “The solar radiation between 3300 and 12,500 Å,” Sol. Phys. 90, 205–258 (1984).
  12. E. V. P. Smith and D. M. Gottlieb, “Solar flux and its variation,” Space Sci. Rev. 16, 771–802 (1974).
  13. R. A. Barnes, “SeaWiFS data: actual and simulated,” http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  14. R. A. Barnes and W. E. Esaias, “A nominal top-of-the-atmosphere spectrum for SeaWiFS,” in SeaWiFS Calibration Topics, Part 2, NASA Tech. Memo. 104566, Vol. 40, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997).
  15. S. F. Biggar, D. I. Gelman, and P. N. Slater, “Improved evaluation of optical depth components from Langley plot data,” Remote Sens. Environ. 32, 91–101 (1990).
  16. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” Tech. Report GL-TR-90–0122 (Geophysical Directorate Phillips Laboratory, Hanscom Air Force Base, Mass., 1990).
  17. R. A. Barnes, R. E. Eplee, Jr., F. S. Patt, and C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from solar and lunar-based measurements,” Appl. Opt. 38, 4649–4664 (1999).
  18. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34, 8363–8374 (1995).
  19. M. Wang, “A sensitivity study of the SeaWiFS atmospheric correction algorithm: effects of spectral band variations,” Remote Sens. Environ. 67, 348–359 (1999).
  20. D. K. Clark, H. R. Gordon, K. K. Voss, Y. Ge, W. Brokenow, and C. Trees, “Validation of atmospheric correction over oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
  21. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited