OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 30 — Oct. 20, 2000
  • pp: 5632–5637

Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin films

Okihiro Sugihara, Makoto Nakanishi, Yanlong Che, Chikara Egami, Yoshimasa Kawata, and Naomichi Okamoto  »View Author Affiliations

Applied Optics, Vol. 39, Issue 30, pp. 5632-5637 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple fabrication technique for nonlinear polymeric optical waveguide patterns is introduced based on the two-beam interference method. We determined that the second-order nonlinearity of poled polymer films is erased by single-pulse ultraviolet (UV) laser irradiation. The erasure mechanism for second-order nonlinearity is discussed. To form a periodic structure in an optical polymer waveguide, two types of optical configuration of two-beam interference were arranged, and a single-pulse UV laser was exposed directly onto poled films. We prove that this method provides a simple way to fabricate volume-type and ridge-type periodically poled structures, i.e., χ(2) gratings, from the submicrometer to the millimeter range.

© 2000 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Original Manuscript: February 14, 2000
Revised Manuscript: July 5, 2000
Published: October 20, 2000

Okihiro Sugihara, Makoto Nakanishi, Yanlong Che, Chikara Egami, Yoshimasa Kawata, and Naomichi Okamoto, "Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin films," Appl. Opt. 39, 5632-5637 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986). [CrossRef]
  2. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988). [CrossRef]
  3. D. S. Kim, A. Morimoto, T. Kobayashi, “Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator,” IEEE J. Sel. Top. Quantum Electron. 2, 493–499 (1996). [CrossRef]
  4. M. Jager, G. I. Stegeman, G. R. Mohlmann, “Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 µm,” Appl. Phys. Lett. 68, 1183–1185 (1996). [CrossRef]
  5. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990). [CrossRef]
  6. G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, E. W. Meijer, “Poled polymers for frequency doubling of diode lasers,” Appl. Phys. Lett. 58, 435–437 (1991). [CrossRef]
  7. G. Marowsky, E. J. Canto-Said, S. Lehmann, F. Sieverdes, “Phase-matched second-harmonic generation in planar waveguides,” Phys. Rev. B 48, 18114–18118 (1993). [CrossRef]
  8. H. Nakayama, O. Sugihara, N. Okamoto, “Direct electron-beam irradiation: a new technique for the erasure of second-order nonlinearity and the fabrication of channel waveguides by use of optical polymeric films,” Opt. Lett. 22, 1541–1543 (1997). [CrossRef]
  9. X. Ni, M. Nakanishi, O. Sugihara, N. Okamoto, “Fabrication of χ(2) grating in poled polymer waveguide based on direct laser beam writing,” Opt. Rev. 5, 9–11 (1998). [CrossRef]
  10. S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, M. Asobe, “Quasi-phase-matched second-harmonic generation in a polymer waveguide with a periodic poled structure,” Appl. Phys. Lett. 68, 1760–1762 (1996). [CrossRef]
  11. Y. Aoyagi, K. Sano, S. Namba, “High spectroscopic qualities in blazed ion-etched holographic gratings,” Opt. Commun. 29, 253–255 (1979). [CrossRef]
  12. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  13. S. Pelissier, D. Blanc, M. P. Andrews, S. I. Najafi, A. V. Tishchenko, O. Parriaux, “Single-step UV recording of sinusoidal surface gratings in hybrid solgel glasses,” Appl. Opt. 38, 6744–6748 (1999). [CrossRef]
  14. J.-L. Archambault, L. Reekie, P. St. J. Russell, “High reflectivity and narrow bandwidth fibre gratings written by a single excimer pulse,” Electron. Lett. 29, 28–29 (1993). [CrossRef]
  15. C. J. Barrett, A. L. Natansohn, P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996). [CrossRef]
  16. T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, M. Goto, “Single pulse nm-size grating formation in polymers using laser ablation with an irradiation wavelength of 355 nm,” Appl. Phys. Lett. 75, 1018–1020 (1999). [CrossRef]
  17. M. Nakanishi, O. Sugihara, N. Okamoto, K. Hirota, “Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides,” Appl. Opt. 37, 1068–1073 (1998). [CrossRef]
  18. K. J. Ilcisin, R. Fedosejevs, “Direct production of gratings on plastic substrates using 248-nm KrF laser radiation,” Appl. Opt. 26, 396–400 (1987). [CrossRef] [PubMed]
  19. M. Ozawa, H. Nakayama, O. Sugihara, N. Okamoto, K. Hirota, “Guest–host polymer films for stable and large second-order nonlinearity,” Nonlinear Opt. 15, 171–174 (1996).
  20. M. Tsuchimori, O. Watanabe, S. Ogata, A. Okada, “Stable second-order optical nonlinearity of urethane–urea copolymers,” Jpn. J. Appl. Phys. 35, L444–L446 (1996). [CrossRef]
  21. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989). [CrossRef]
  22. L. M. Hayden, G. F. Sauter, F. R. Ore, P. L. Pasillas, J. M. Hoover, G. A. Lindsay, R. A. Henry, “Second-order nonlinear optical measurements in guest–host and side-chain polymers,” J. Appl. Phys. 68, 456–465 (1990). [CrossRef]
  23. O. Watanabe, M. Tsuchimori, A. Okada, “Two-step refractive index changes by photoisomerization and photobleaching processes in the films of nonlinear optical polyurethanes and a urethane–urea copolymer,” J. Mater. Chem. 6, 1487–1492 (1996). [CrossRef]
  24. H. Niino, Y. Kawabata, A. Yabe, “Application of excimer laser polymer ablation to alignment of liquid crystals: periodic microstructure on polyethersulfone,” Jpn. J. Appl. Phys. 28, L2225–L2227 (1989). [CrossRef]
  25. Th. Lippert, F. Zimmermann, A. Wokaun, “Surface analysis of excimer-laser-treated polyethylene-terephthalate by surface-enhanced Raman scattering and x-ray photoelectorn spectroscopy,” Appl. Spectrosc. 47, 1931–1942 (1993). [CrossRef]
  26. D. Knittel, W. Kesting, E. Schollmeyer, “Surface structuring of synthetic fibres by UV laser irradiation, Part I: Phenomenological report,” Polym. Int. 43, 231–239 (1997). [CrossRef]
  27. Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, M. Amano, “Quasi-phase-matched second-harmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997). [CrossRef]
  28. E. Nishima, R. Katayama, T. Kondo, R. Ito, J. Kim, T. Watanabe, S. Miyata, “Design and fabrication of organic waveguiding devices for quasi-phase-matched second-harmonic-generation,” Nonlinear Opt. 22, 433–436 (1999).
  29. Y. Che, O. Sugihara, C. Egami, H. Fujimura, Y. Kawata, N. Okamoto, M. Tsuchimori, O. Watanabe, “Fabrication of surface relief grating with second-order nonlinearity using urethane–urea copolymer films,” Jpn. J. Appl. Phys. 38, 6316–6320 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited