OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 31 — Nov. 1, 2000
  • pp: 5663–5670

Systematic errors that are due to the monochromatic-equivalent radiative transfer approximation in thermal emission problems

David S. Turner  »View Author Affiliations


Applied Optics, Vol. 39, Issue 31, pp. 5663-5670 (2000)
http://dx.doi.org/10.1364/AO.39.005663


View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An underlying assumption of data assimilation models is that the radiative transfer model used by them can simulate observed radiances with zero bias and small error. For practical reasons a fast parameterized radiative transfer model is used instead of a highly accurate line-by-line model. These fast models usually replace the spectral integration of the product of the transmittance and the Planck function with a monochromatic equivalent, namely, the product of a spectrally averaged transmittance and a spectrally averaged Planck function. The error of using this equivalent form is commonly assumed to be negligible. However, this error is not necessarily negligible and introduces a systematic height-dependent bias to the assimilation scheme. Although the bias could be corrected by a separate bias correction scheme, it is more effective to correct its source, the fast radiative transfer model. I examine the magnitude of error when the monochromatic-equivalent approach is used and demonstrate how a fast parameterized radiative model with Planck-weighted mean transmittances can effectively reduce if not eliminate these errors at source. I focus on channel 12 of the High-Resolution Infrared Radiation Sounder onboard the National Oceanic and Atmospheric Administration (NOAA)-14 satellite that, among all the channels of this instrument, displays the largest error.

© 2000 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer

History
Original Manuscript: February 22, 2000
Revised Manuscript: June 14, 2000
Published: November 1, 2000

Citation
David S. Turner, "Systematic errors that are due to the monochromatic-equivalent radiative transfer approximation in thermal emission problems," Appl. Opt. 39, 5663-5670 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-31-5663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. McMillin, “The TIROS-N Operational Vertical Sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).
  2. L. Garand, D. S. Turner, C. Chouinard, J. Hallé, “A physical formulation of atmospheric transmittances for the massive assimilation of satellite infrared radiances,” J. Appl. Meteorol. 38, 541–554 (1999). [CrossRef]
  3. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995). [CrossRef] [PubMed]
  4. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995). [CrossRef] [PubMed]
  5. R. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
  6. B. Soden, S. Tjemkes, J. Schmetz, R. Saunders, J. Bates, B. Ellingson, R. Engelen, L. Garand, D. Jackson, G. Jedlovec, T. Kleespies, D. Randel, P. Rayer, E. Salathe, D. Schwarzkopf, N. Scott, B. Sohn, S. de Souza-Machado, L. Strow, D. Tobin, D. Turner, P. van Delst, T. Wehr, “An intercomparison of radiation codes for retrieving upper-tropospheric humidity in the 6.3-µm band: a report from the first GVaP workshop,” Bull. Am. Meteorol. Soc. 81, 797–808 (2000). [CrossRef]
  7. D. S. Turner, “Absorption coefficient estimation using a two dimensional interpolation procedure,” J. Quant. Spectrosc. Radiat. Transfer 53, 633–637 (1995). [CrossRef]
  8. S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  9. C. Cousin, R. Le Doucen, C. Boulet, A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2. 2: N2 and O2 broadening,” Appl. Opt. 24, 3899–3907 (1985). [CrossRef] [PubMed]
  10. F. Thibault, V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, Ch. Boulet, “Infrared collision-induced absorption by O2 near 6.4 µm for atmospheric applications: measurements and empirical modeling,” Appl. Opt. 36, 563–567 (1997). [CrossRef] [PubMed]
  11. W. J. Lafferty, A. M. Solodov, A. Weber, W. B. Olsen, J.-M. Hartmann, “Infrared collision-induced absorption by N2 near 4.3 µm for atmospheric applications: measurements and empirical modeling,” Appl. Opt. 35, 5911–5917 (1996). [CrossRef] [PubMed]
  12. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  13. W. G. Planet, “Data extraction and calibration of TIROS-N/NOAA radiometers,” (National Oceanic and Atmospheric Administration, Washington, D.C., 1988).
  14. D. S. Turner, C. B. Chouinard, “An attempt to understand and correct some of the errors of forward radiative transfer models,” in Technical Proceedings of the Ninth International TOVS Study Conference (European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK, 1997), pp. 499–508.
  15. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwood, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  16. C. Chouinard, J. Hallé, “The impact of TOVS radiances in the 3D variational analysis system,” in Technical Proceedings of the Tenth International TOVS Study Conference (Bureau of Metrology Research Centre, Melbourne, Australia, 1999).
  17. J. C. Derber, W.-S. Wu, “The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system,” Mon. Weather Rev. 126, 2287–2299 (1998). [CrossRef]
  18. J. R. Eyre, G. A. Kelly, A. P. McNally, E. Andersson, A. Persson, “Assimilation of TOVS radiance information through one-dimensional variational analysis,” Q.J.R. Meteorol. Soc. 119, 1427–1463 (1993). [CrossRef]
  19. D. S. Turner, “A fast line-by-line radiative transfer model for TOVS radiance/transmittance studies,” in Technical Proceedings of the Eighth International TOVS Study Conference (European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK, 1995), pp. 465–473.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited