OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 31 — Nov. 1, 2000
  • pp: 5872–5883

Image reconstruction for photoacoustic scanning of tissue structures

Christoph G. A. Hoelen and Frits F. M. de Mul  »View Author Affiliations

Applied Optics, Vol. 39, Issue 31, pp. 5872-5883 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic signal generation can be used for a new medical tomographic technique. This makes it possible to image optically different structures, such as the (micro)vascular system in tissues, by use of a transducer array for the detection of laser-generated wide-bandwidth ultrasound. A time-domain delay-and-sum focused beam-forming technique is used to locate the photoacoustic sources in the sample. To characterize the transducer response, simulations have been performed for a wide variety of parameter values and have been verified experimentally. With these data the weight factors for the spectrally and temporally filtered sensor signals are determined in order to optimize the signal-to-noise ratio of the beam former. The imaging algorithm is investigated by simulations and experiments. With this algorithm, for what is to our knowledge the first time, the three-dimensional photoacoustic imaging of complex optically absorbing structures located in a highly diffuse medium is demonstrated. When 200-µm-diameter hydrophone elements are used, the depth resolution is better than 20 µm, and the lateral resolution is better than 200 µm, independent of the depth for our range of imaging (to ∼6 mm). Reduction of the transducer diameters and adaptation of the weight factors, at the cost of some increase of the noise level, will further improve the lateral resolution. The synthetic aperture algorithm used has been shown to be suitable for the new technique of photoacoustic tissue scanning.

© 2000 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Original Manuscript: December 17, 1999
Revised Manuscript: May 5, 2000
Published: November 1, 2000

Christoph G. A. Hoelen and Frits F. M. de Mul, "Image reconstruction for photoacoustic scanning of tissue structures," Appl. Opt. 39, 5872-5883 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998). [CrossRef]
  2. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000). [CrossRef]
  3. R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999). [CrossRef]
  4. G. Paltauf, H. Schmidt-Kloiber, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998). [CrossRef]
  5. G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999). [CrossRef]
  6. J. A. Evans, “Pulse-echo ultrasound,” in Practical Ultrasound, R. Lerski, ed., (IRL, Oxford, UK, 1988), pp. 15–29.
  7. M. Kirschner, G. Paltauf, H. Schmidt-Kloiber, “Determination of optical properties by measuring laser induced acoustic transients,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Verga Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 228–237 (1996). [CrossRef]
  8. S. Lohmann, C. Ruff, C. Schmitz, H. Lubatchowski, W. Ertmer, “Photoacoustic determination of optical parameters of biological tissue,” in Laser-Tissue Interaction and Tissue Optics II, H. J. Albrecht, G. P. Delacretaz, eds., Proc. SPIE2923, 2–11 (1996). [CrossRef]
  9. A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved optoacoustic measurement of absorption of light by inhomogeneous media,” Appl. Opt. 34, 1484–1487 (1995). [CrossRef] [PubMed]
  10. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997). [CrossRef] [PubMed]
  11. A. A. Oraevsky, R. Esenaliev, S. L. Jacques, S. Thomsen, F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography I, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2389, 198–208 (1995).
  12. R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, A. Katzir, eds., Proc. SPIE2979, 71–82 (1997).
  13. R. A. Kruger, P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994). [CrossRef] [PubMed]
  14. R. A. Kruger, P. Liu, Y. R. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995). [CrossRef] [PubMed]
  15. D. A. Hutchins, A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 429–449 (1986). [CrossRef]
  16. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986). [CrossRef]
  17. R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 548–558 (1984). [CrossRef]
  18. D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, 898–904 (1977). [CrossRef]
  19. D. H. Johnson, D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques (PTR Prentice-Hall, Englewood Cliffs, N.J., 1993), Chap. 4, pp. 111–190.
  20. C. G. A. Hoelen, F. F. M. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999). [CrossRef]
  21. J. A. Evans, “Physics—the nature of ultrasound,” in Practical Ultrasound, R. Lerski, ed. (IRL, Oxford, England, 1988), pp. 1–13.
  22. M. W. Sigrist, F. K. Kneubühl, “Laser generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978). [CrossRef]
  23. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).
  24. M. I. Khan, G. J. Diebold, “The photoacoustic effect generated by an isotropic solid sphere,” Ultrasonics 33, 265–269 (1995). [CrossRef]
  25. C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, A. Katzir, eds., Proc. SPIE3196, 142–153 (1997). [CrossRef]
  26. V. M. Ristic, Principles of Acoustic Devices (Wiley, New York, 1983).
  27. C. G. A. Hoelen, R. Pongers, A. Dekker, F. F M de Mul, “3D-photoacoustic imaging of blood vessels,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 386–390.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited