OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 32 — Nov. 10, 2000
  • pp: 5998–6005

Rotation-invariant optical recognition of three-dimensional objects

José J. Esteve-Taboada, Javier García, and Carlos Ferreira  »View Author Affiliations


Applied Optics, Vol. 39, Issue 32, pp. 5998-6005 (2000)
http://dx.doi.org/10.1364/AO.39.005998


View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An automatic method for rotation-invariant three-dimensional (3-D) object recognition is proposed. The method is based on the use of 3-D information contained in the deformed fringe pattern obtained when a grating is projected onto an object’s surface. The proposed method was optically implemented by means of a two-cycle joint transform correlator. The rotation invariance is achieved by means of encoding with the fringe pattern a single component of the circular-harmonic expansion derived from the target. Thus the method is invariant for rotations around the line of sight. The whole experimental setup can be constructed with simple equipment. Experimental results show the utility of the proposed method.

© 2000 Optical Society of America

OCIS Codes
(100.4550) Image processing : Correlators
(100.5760) Image processing : Rotation-invariant pattern recognition
(100.6890) Image processing : Three-dimensional image processing

History
Original Manuscript: February 2, 2000
Revised Manuscript: June 21, 2000
Published: November 10, 2000

Citation
José J. Esteve-Taboada, Javier García, and Carlos Ferreira, "Rotation-invariant optical recognition of three-dimensional objects," Appl. Opt. 39, 5998-6005 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-32-5998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  3. Y. N. Hsu, H. H. Arsenault, “Optical pattern recognition using circular harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  4. D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988). [CrossRef]
  5. J. Rosen, J. Shamir, “Scale invariant pattern recognition with logarithmic radial harmonic filters,” Appl. Opt. 28, 240–244 (1989). [CrossRef] [PubMed]
  6. D. Mendlovic, N. Konforti, E. Marom, “Shift and projection invariant pattern recognition using logarithmic harmonics,” Appl. Opt. 29, 4784–4789 (1990). [CrossRef] [PubMed]
  7. E. Marom, D. Mendlovic, N. Konforti, “Generalized spatial deformation harmonic filter for distortion invariant pattern recognition,” Opt. Commun. 78, 416–424 (1990). [CrossRef]
  8. O. Faugeras, Three-Dimensional Computer Vision. A Geometric Viewpoint (MIT Press, Cambridge, Mass., 1993).
  9. A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997). [CrossRef]
  10. E. Paquet, M. Rioux, H. H. Arsenault, “Invariant pattern recognition for range images using the phase Fourier transform and a neural network,” Opt. Eng. 34, 1178–1183 (1995). [CrossRef]
  11. E. Paquet, P. García-Martínez, J. García, “Tridimensional invariant correlation based on phase-coded and sine-coded range images,” J. Opt. 29, 35–39 (1998). [CrossRef]
  12. J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430–436 (1998). [CrossRef]
  13. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538–7544 (1998). [CrossRef]
  14. T. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999). [CrossRef]
  15. T. Kim, T. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999). [CrossRef]
  16. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  17. J. J. Esteve-Taboada, D. Mas, J. García, “Three-dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760–4765 (1999). [CrossRef]
  18. M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983). [CrossRef] [PubMed]
  19. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  20. D. C. Ghiglia, L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  21. Y. Sheng, H. H. Arsenault, “Method for determining expansion centers and predicting sidelobe levels for circular harmonic filters,” J. Opt. Soc. Am. A 4, 1793–1797 (1987). [CrossRef]
  22. G. Prémont, Y. Sheng, “Fast design of circular harmonic filters using simulated annealing,” Appl. Opt. 32, 3116–3121 (1993). [CrossRef]
  23. P. García-Martínez, J. García, C. Ferreira, “A new criterion for determining the expansion center for circular-harmonic filters,” Opt. Commun. 117, 399–405 (1995). [CrossRef]
  24. F. T. S. Yu, X. Li, E. Tam, S. Jutamulia, D. A. Gregory, “Rotation invariant pattern recognition with a programmable joint transform correlator,” Appl. Opt. 28, 4725–4727 (1989). [CrossRef] [PubMed]
  25. D. Mendlovic, E. Marom, N. Konforti, “Complex reference-invariant joint-transform correlator,” Opt. Lett. 15, 1224–1226 (1990). [CrossRef] [PubMed]
  26. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  27. M. Alam, Y. Gu, “Sobel operator based multiobject joint transform correlation,” Optik (Stuttgart) 100, 28–32 (1995).
  28. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited