OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 32 — Nov. 10, 2000
  • pp: 6006–6018

Cascadable spatial-soliton logic gates

Steve Blair and Kelvin Wagner  »View Author Affiliations

Applied Optics, Vol. 39, Issue 32, pp. 6006-6018 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The three-terminal spatial-soliton angular-deflection geometry provides the characteristics of an inverting logic gate with gain, and phase-insensitive implementations can be realized by a number of specific nonlinear interactions between orthogonally polarized waves. In particular, numerical simulations of spatial-soliton dragging and collision are used to calculate the transfer functions of inverter and multiple configurations of two-input nor gates and to address their cascadability. These transfer functions converge in cascaded operation and suggest that fan-out greater than 2 with a large noise margin is attainable in a system with standardized signal levels. These results are obtained with the material properties of fused silica and are representative of low-loss Kerr media.

© 2000 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(200.4660) Optics in computing : Optical logic

Original Manuscript: February 9, 2000
Revised Manuscript: August 10, 2000
Published: November 10, 2000

Steve Blair and Kelvin Wagner, "Cascadable spatial-soliton logic gates," Appl. Opt. 39, 6006-6018 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Willner “Mining the optical bandwidth for a terabit per second,” IEEE Spectrum 34, 32–41 (1997). [CrossRef]
  2. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976). [CrossRef]
  3. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982). [CrossRef]
  4. N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 311–313 (1988). [CrossRef]
  5. M. N. Islam, “All-optical cascadable nor gate with gain,” Opt. Lett. 15, 417–419 (1990). [CrossRef] [PubMed]
  6. M. Eiselt, W. Pieper, H. G. Weber, “slalom as a high speed multiplexor/demultiplexor,” Electron. Lett. 28, 1505–1507 (1992). [CrossRef]
  7. J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, “A terahertz optical asymmetric demultiplexor (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993). [CrossRef]
  8. N. S. Patel, K. L. Hall, K. A. Rauschenbach, “40-Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer,” Opt. Lett. 21, 1466–1468 (1996). [CrossRef] [PubMed]
  9. S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear optical circuit elements as logic gates for optical computers: the first digital optical circuits,” Opt. Eng. 24, 569–574 (1985).
  10. D. A. Pattison, W. Forysiak, P. N. Kean, I. Bennion, N. J. Doran, “Soliton switching using cascaded nonlinear-optical loop mirrors,” Opt. Lett. 20, 19–21 (1995). [CrossRef] [PubMed]
  11. X. D. Cao, B. C. Barnett, K. H. Ahn, Y. Liang, G. R. Williams, M. Vaziri, M. N. Islam, “Experimental cascaded operation of low-birefringence nonlinear-optical loop mirrors,” Opt. Lett. 21, 1211–1213 (1996). [CrossRef] [PubMed]
  12. R. W. Keyes, “What makes a good computer device?” Science 230, 138–144 (1985). [CrossRef] [PubMed]
  13. D. A. B. Miller, “Device requirements for digital optical processing,” Digital Optical Computing, SPIE Crit. Rev.CR35, 68–76 (1990).
  14. A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “Temporal evolution of amplitude restoration and thresholding in an all-optical regenerative memory,” J. Mod. Opt. 46, 1251–1254 (1999).
  15. R. W. Keyes, “Optical logic—in the light of computer technology,” Opt. Acta 32, 525–535 (1985). [CrossRef]
  16. S. Blair, K. Wagner, R. McLeod, “Asymmetric spatial soliton dragging,” Opt. Lett. 19, 1943–1945 (1994). [CrossRef] [PubMed]
  17. S. Blair, K. Wagner, “Spatial soliton angular deflection logic gates,” Appl. Opt. 38, 6749–6772 (1999). [CrossRef]
  18. S. Blair, K. Wagner, R. McLeod, “Material figures-of-merit for spatial soliton interactions in the presence of absorption,” J. Opt. Soc. Am. B 13, 2141–2153 (1996). [CrossRef]
  19. J. U. Kang, G. I. Stegeman, J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21, 189–191 (1996). [CrossRef] [PubMed]
  20. M. Zitelli, E. Fazio, M. Bertolotti, “All-optical nor gate based on the interaction between cosine-shaped input beams of orthogonal polarization,” J. Opt. Soc. Am. B 16, 214–218 (1999). [CrossRef]
  21. E. Caglioti, S. Trillo, S. Wabnitz, G. I. Stegeman, “Limitations to all-optical switching using nonlinear couplers in the presence of linear and nonlinear absorption and saturation,” J. Opt. Soc. Am. B 5, 472–482 (1988). [CrossRef]
  22. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989). [CrossRef] [PubMed]
  23. A. Villeneuve, J. U. Kang, J. S. Aitchison, G. I. Stegeman, “Unity ratio of cross-to self-phase modulation in bulk AlGaAs and AlGaAs/GaAs MQW waveguides at half the bandgap,” Appl. Phys. Lett. 67, 760–762 (1995). [CrossRef]
  24. R. J. Manning, A. D. Ellis, A. J. Poustie, K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997). [CrossRef]
  25. K. L. Hall, G. Lenz, A. M. Darwish, E. P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994). [CrossRef]
  26. R. J. Manning, G. Sherlock, “Recovery of a π phase shift in ∼12.5 ps in a semiconductor laser amplifier,” Electron. Lett. 31, 307–308 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited