OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6058–6071

Error analysis of Raman differential absorption lidar ozone measurements in ice clouds

Jens Reichardt  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6058-6071 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ≳0.1 km-1, the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.

© 2000 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.4210) Scattering : Multiple scattering
(290.5860) Scattering : Scattering, Raman

Original Manuscript: December 1, 1999
Revised Manuscript: July 3, 2000
Published: November 20, 2000

Jens Reichardt, "Error analysis of Raman differential absorption lidar ozone measurements in ice clouds," Appl. Opt. 39, 6058-6071 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature (London) 321, 755–758 (1986). [CrossRef]
  2. P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’,” Nature (London) 324, 651–655 (1986). [CrossRef]
  3. M. J. Molina, T.-L. Tso, L. T. Molina, F. C.-Y. Wang, “Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine,” Science 238, 1253–1257 (1987). [CrossRef] [PubMed]
  4. D. J. Hofmann, S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichón,” J. Geophys. Res. 94, 5029–5041 (1989). [CrossRef]
  5. H. Jäger, K. Wege, “Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions,” J. Atmos. Chem. 10, 273–287 (1990). [CrossRef]
  6. G. Brasseur, C. Granier, “Mount Pinatubo aerosols, chlorofluorocarbons, and ozone depletion,” Science 257, 1239–1242 (1992). [CrossRef] [PubMed]
  7. X. X. Tie, G. P. Brasseur, B. Briegleb, C. Granier, “Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone,” J. Geophys. Res. 99, 20,545–20,562 (1994). [CrossRef]
  8. A. Ansmann, F. Wagner, U. Wandinger, I. Mattis, U. Görsdorf, H.-D. Dier, J. Reichardt, “Pinatubo aerosol and stratospheric ozone reduction: observations over central Europe,” J. Geophys. Res. 101, 18,775–18,785 (1996). [CrossRef]
  9. J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990). [CrossRef]
  10. J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993). [CrossRef]
  11. S. Solomon, S. Borrmann, R. R. Garcia, R. Portmann, L. Thomason, L. R. Poole, D. Winkler, M. P. McCormick, “Heterogeneous chlorine chemistry in the tropopause region,” J. Geophys. Res. 102, 21,411–21,429 (1997). [CrossRef]
  12. S. Borrmann, S. Solomon, L. Avallone, D. Toohey, D. Baumgardner, “On the occurrence of CLO in cirrus clouds and volcanic aerosol in the tropopause region,” Geophys. Res. Lett. 24, 2011–2014 (1997). [CrossRef]
  13. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentration in mid-latitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932 (1996). [CrossRef]
  14. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellet, “Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998). [CrossRef]
  15. J. A. Curry, L. F. Radke, “Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere,” Atmos. Environ. 27, 2873–2879 (1993). [CrossRef]
  16. A. Lacis, D. J. Wuebbles, J. A. Logan, “Radiative forcing of climate by changes in the vertical distribution of ozone,” J. Geophys. Res. 95, 9971–9982 (1990). [CrossRef]
  17. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  18. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  19. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, 1976). [CrossRef]
  20. W. Steinbrecht, A. I. Carswell, “Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone,” J. Geophys. Res. 100, 1215–1233 (1995). [CrossRef]
  21. T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993). [CrossRef]
  22. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996). [CrossRef]
  23. P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV wavelengths: implications for DIAL measurements of tropospheric ozone,” Contrib. Atmos. Phys. 69, 177–187 (1996).
  24. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  25. J. Reichardt, “Optische Fernmessung von Ozon in Zirruswolken,” Ph.D. dissertation, Rep. GKSS 98/E/11 (1998) (Universität Hamburg, Hamburg, Germany, 1997).
  26. J. Reichardt, C. Weitkamp, “Raman-DIAL measurements in the upper troposphere and stratosphere: the effect of high-altitude ice clouds on ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 208–211.
  27. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  28. M. Cacciani, A. di Sarra, G. Fiocco, A. Amoruso, “Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,” J. Geophys. Res. 94, 8485–8490 (1989). [CrossRef]
  29. M. Griggs, “Absorption coefficients of ozone in the ultraviolet and visible regions,” J. Chem. Phys. 49, 857–859 (1968). [CrossRef]
  30. U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994). [CrossRef]
  31. D. H. Ehhalt, F. Rohrer, A. Wahner, “Sources and distribution of NOx in the upper troposphere at northern mid-latitudes,” J. Geophys. Res. 97, 3725–3738 (1992). [CrossRef]
  32. V. Bürger, J. Schneider, F. Arnold, “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” in Polar Stratospheric Ozone, Proceedings of the Third European Workshop on Polar Stratospheric Ozone, (European Commission, Brussels, Belgium, 1996), pp. 209–212.
  33. R. S. Stolarsky, H. L. Wesoky, eds., “The Atmospheric Effects of Stratospheric Aircraft: A Third Program Report,” (NASA Office of Space Science and Applications, Washington, D.C., 1993).
  34. U. Wandinger, A. Ansmann, J. Reichardt, T. Deshler, “Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar,” Appl. Opt. 34, 8315–8329 (1995). [CrossRef] [PubMed]
  35. H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991). [CrossRef] [PubMed]
  36. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  37. J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000). [CrossRef]
  38. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  39. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976). [CrossRef] [PubMed]
  40. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  41. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  42. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  43. M. I. Mishchenko, A. Macke, “Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998). [CrossRef]
  44. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  45. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998). [CrossRef]
  46. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984). [CrossRef]
  47. D. Deirmendian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  48. W. A. Bentley, W. J. Humphreys, Snow Crystals (Dover, New York, 1962).
  49. J. D. Cross, “Study of the surface of ice with a scanning electron microscope,” in Physics of Ice, Proceeding of the International Symposium on Physics of Ice, Munich, Germany, 9–14 September 1968 (Plenum, New York, 1968), pp. 81–94.
  50. P. V. Hobbs, Ice Physics (Oxford University, Bristol, 1974).
  51. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581–588 (1987). [CrossRef]
  52. K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
  53. C. M. R. Platt, J. D. Spinhirne, W. D. Hart, “Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles,” J. Geophys. Res. 94, 11,151–11,164 (1989). [CrossRef]
  54. A. J. Heymsfield, “Ice particles in a cirriform cloud at -83 °C and implications for polar stratospheric clouds,” J. Atmos. Sci. 43, 851–855 (1986). [CrossRef]
  55. J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997). [CrossRef]
  56. W. P. Arnott, Y. Y. Dong, J. Hallett, M. R. Poelott, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994). [CrossRef]
  57. J. E. Dye, D. Baumgardner, B. W. Gandrud, S. R. Kawa, K. K. Kelly, M. Loewenstein, G. V. Ferry, K. R. Chan, B. L. Gary, “Particle size distributions in arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation,” J. Geophys. Res. 97, 8015–8034 (1992). [CrossRef]
  58. C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978). [CrossRef]
  59. J. Reichardt, C. Weitkamp, S. Krumbholz, “Rotational vibrational–rotational (RVR) Raman DIAL: a novel lidar technique for atmospheric ozone measurements,” in Proceedings of the 13th ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP-397 (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 237–241.
  60. J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited