OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6086–6096

Estimate optimization parameters for incoherent backscatter heterodyne lidar including unknown return signal bandwidth

Barry J. Rye  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6086-6096 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conditions for optimizing the precision of heterodyne atmospheric lidar measurements using extended (deep) targets are investigated. The minimum standard deviation of each unknown (return power, Doppler shift, and signal bandwidth) is approximately twice the optical limit at best and is only weakly dependent on knowledge of the other parameters at optimal power levels. Somewhat stronger signal power levels are needed for bandwidth estimation. Results are displayed as a function of a time–bandwidth product to clarify the trade-off between estimate precision and range weighting. Realization under ideal conditions is confirmed by use of simulations.

© 2000 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(040.2840) Detectors : Heterodyne
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry

Original Manuscript: February 23, 2000
Revised Manuscript: July 20, 2000
Published: November 20, 2000

Barry J. Rye, "Estimate optimization parameters for incoherent backscatter heterodyne lidar including unknown return signal bandwidth," Appl. Opt. 39, 6086-6096 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Rye, R. M. Hardesty, “Estimate optimization parameters for incoherent backscatter lidar,” Appl. Opt. 36, 9425–9436 (1997); errata, 37, 4016 (1998).
  2. B. J. Rye, R. M. Hardesty, “Deteciton techniques for validating Doppler estimates in heterodyne lidar,” Appl. Opt. 36, 1940–1951 (1997). [CrossRef] [PubMed]
  3. B. J. Rye, “Estimation of return signal spectral width in incoherent backscatter heterodyne lidar,” in Proceedings of Tenth Biennial coherent laser Radar Conference (University Space Research Association, 4950 Corporate Drive, Suite 100, Huntsville, Ala. 35808, 1999), pp. 195–197.
  4. L. Lading, A. S. Jensen, “Estimating the spectral width of a narrowband optical signal,” Appl. Opt. 19, 2750–2756 (1980).
  5. R. G. Seasholtz, “High-speed anemometry based on spectrally resolved Rayleigh scattering,” in Fourth International Conference on Laser Anemometry, NASA Tech. Memo. 104522 (NASA Lewis Research Center, Cleveland, Ohio 44135, 1991).
  6. R. G. Seasholtz, “Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering,” presented at the Proceedings of the Measurement Technology Conference (NASA Langley Research Center, Hampton, Virginia, 1992).
  7. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in Doppler lidar. II: Incoherent correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993). [CrossRef]
  8. J.-M. Gagne, J.-P. Saint-Dizier, M. Picard, “Methode d’echantillonnage des fonctions deterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974). [CrossRef]
  9. H. Cramer, Mathematical Methods of Statistics (Princeton University, Princeton, N.J., 1946).
  10. H. Z. Cummins, R. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1970), vol. 8, pp. 133–200.
  11. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962), Chap. 9 (Chap. 10 in 2nd ed., 1980).
  12. B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998); see qualitative discussion in Appendix.
  13. M. J. Levin, “Power spectrum parameter estimation,” IEEE Trans. Inf. Theory IT-11, 100–107 (1965). [CrossRef]
  14. D. S. Zrnic, “Spectral statistics for complex colored discrete-time sequences,” IEEE Trans. Acoust. Speech Signal Process. ASSP-28, 596–599 (1980). [CrossRef]
  15. A. Arcese, E. W. Trombini, “Variances of spectral parameters with a Gaussian shape,” IEEE Trans. Inf. Theory IT-17, 200–201 (1971). [CrossRef]
  16. D. S. Zrnic, “Estimation of spectral moments for weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979). [CrossRef]
  17. O. Brovko, “The structure of a maximum likelihood center frequency estimate,” (Hughes Aircraft Co., 1977).
  18. B. J. Rye, “The spectral correlation of atmospheric lidar returns with range-dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990).
  19. E. S. Chornoboy, “Optimal mean velocity estimation for Doppler weather radars,” IEEE Trans. Geosci. Remote Sens. 31, 575–586 (1993). [CrossRef]
  20. R. G. Frehlich, “Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals,” IEEE Trans. Geosci. Remote Sens 31, 1123–1131 (1993). [CrossRef]
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press. Cambridge, England, 1992).
  22. K. S. Miller, M. M. Rochwarger, “A covariance approach to spectral moment estimation,” IEEE Trans. Inf. Theory IT-18, 588–596 (1972).
  23. R. Frehlich, L. Cornman, “Coherent Doppler lidar signal spectrum with wind turbulence,” Appl. Opt. 38, 7456–7466 (1999). [CrossRef]
  24. B. Porat, B. Friedlander, “Computation of the exact information matrix of Gaussian time series with stationary random components,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 118–130 (1986); see Appendix A for derivation of expression for information matrix of Gaussian time series.
  25. R. Frehlich, “Performance of maximum likelihood estimators of mean power and Doppler velocity with a priori knowledge of spectral width,” J. Atmos. Oceanic Technol. 16, 1702–1709 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited