OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6097–6108

Tilt angular anisoplanatism and a full-aperture tilt-measurement technique with a laser guide star

Mikhail S. Belen’kii  »View Author Affiliations


Applied Optics, Vol. 39, Issue 33, pp. 6097-6108 (2000)
http://dx.doi.org/10.1364/AO.39.006097


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is presented for sensing atmospheric wave-front tilt from a laser guide star (LGS) by observing a laser beacon with auxiliary telescopes. The analysis is performed with a LGS scatter model and Zernike polynomial expansion of wave-front distortions. It is shown that integration of the LGS image over its angular extent and the position of the auxiliary telescope in an array reduce the tilt sensing error associated with the contribution from the downward path. This allows us to single out only the wave-front tilt of the transmitted beam on the uplink path that corresponds to the tilt for the scientific object. The tilt angular correlation is analyzed in the atmosphere with a finite turbulence outer scale. The tilt correlation angle depends on the angular size of the telescope and the outer scale of turbulence. The tilt sensing error increases with the auxiliary telescope diameter, suggesting that an auxiliary telescope must be small. The Strehl ratio associated with the contribution from the downward path is in the range from 0.1 to 0.9 when the relative telescope diameter D/ r0 varies from 4 to 93 and the turbulence outer scale is in the 10–150-m range. Tilt correction increases the Strehl ratio compared with the uncorrected image for all the system parameters and seeing conditions considered. The method discussed gives a higher performance than the conventional technique, which uses an off-axis natural guide star. A scheme for measuring tilt with a beam projected from a small aperture is described. This scheme allows us to avoid phosphorescence of the main optical train for a sodium LGS.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(110.0110) Imaging systems : Imaging systems
(140.0140) Lasers and laser optics : Lasers and laser optics
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

History
Original Manuscript: March 20, 2000
Revised Manuscript: July 14, 2000
Published: November 20, 2000

Citation
Mikhail S. Belen’kii, "Tilt angular anisoplanatism and a full-aperture tilt-measurement technique with a laser guide star," Appl. Opt. 39, 6097-6108 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-33-6097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Foy, A. Labeyrie, “Feasibility of adaptive telescopes with laser probe,” Astron. Astrophys. 152, 129–131 (1985).
  2. L. A. Thompson, C. S. Gardner, “Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy,” Nature (London) 328, 229–231 (1987). [CrossRef]
  3. C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, H. T. Barclay, “Compensation of atmospheric optical distortion using a synthetic beacon,” Nature (London) 353, 141–143 (1991). [CrossRef]
  4. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurements of atmospheric wave-front distortion using scattering light from a laser guide star,” Nature (London) 353, 144–146 (1991). [CrossRef]
  5. M. S. Belen’kii, “Fundamental limitation in adaptive optics: how to eliminate it? A full aperture tilt measurement technique with a laser guide star,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 321–323 (1994). [CrossRef]
  6. M. S. Belen’kii, “Full aperture tilt measurement technique with a laser guide star,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc. SPIE2471, 289–300 (1995). [CrossRef]
  7. M. S. Belen’kii, “Tilt angular correlation and tilt sensing techniques with a laser guide star,” in Optics in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing, A. D. Devir, A. Kohnle, C. Werner, eds., Proc. SPIE2956, 206–217 (1996). [CrossRef]
  8. M. S. Belen’kii, “Principle of equivalency of the phase difference and off-axis tilt sensing technique with a laser guide star,” in Image Propagation through the Atmosphere, J. C. Dainty, L. R. Bissonnette, eds., Proc. SPIE2828, 280–292 (1996). [CrossRef]
  9. M. S. Belen’kii, “Multiple aperture averaging technique for measuring full aperture tilt with a laser guide star,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 101–112 (1997). [CrossRef]
  10. R. Foy, A. Migus, F. Biraben, G. Grynberg, P. R. McCullough, M. Tallon, “The polychromatic artificial Sodium star: a new concept for correcting the atmospheric tilt,” Astron. Astrophys. 111, 569–578 (1995).
  11. R. Ragazzoni, S. Esposito, E. Marchetti, “Auxiliary telescopes for absolute tip–tilt determination of a laser guide star,” Mon. Not. R. Astron. Soc. 276, L76–L78 (1995).
  12. R. Ragazzoni, “Absolute tip–tilt determination with laser beacons,” Astron. Astrophys. 305, L13–L16 (1996).
  13. R. Ragazzoni, “Propagation delay of a laser beacon as a tool to retrieve absolute tilt measurements,” Astrophys. J. 465, L73–L75 (1996). [CrossRef]
  14. M. R. Whiteley, B. M. Welsh, M. C. Roggemann, “Incorporating higher-order modal measurements in tilt estimation: natural and laser guide star applications,” Appl. Opt. 37, 8287–8296 (1998). [CrossRef]
  15. M. S. Belen’kii, S. J. Karis, J. M. Brown, R. Q. Fugate, “Experimental validation of a technique to measure tilt from a laser guide star,” Opt. Lett. 24, 637–639 (1999). [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).
  17. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Dedham, Mass., 1987).
  18. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 632–637 (1974).
  19. D. L. Fried, “Varieties of isoplanatism,” in Imaging through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 20–29 (1976). [CrossRef]
  20. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  21. G. C. Valley, S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979). [CrossRef]
  22. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991). [CrossRef]
  23. P. H. Hu, J. Stone, T. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989). [CrossRef]
  24. J. Stone, P. H. Hu, S. P. Mills, S. Ma, “Anisoplanatic effects in finite-aperture optical systems,” J. Opt. Soc. Am. A 11, 347–357 (1994). [CrossRef]
  25. R. J. Sasiela, J. D. Shelton, “Transverse spectral filtering and Mellin transform techniques applied to the effect of the outer scale on tilt and tilt anisoplanatism,” J. Opt. Soc. Am. A 10, 646–660 (1993). [CrossRef]
  26. F. Chassat, “Calcul du domain d’isoplanet̀isme d’un system̀ d’optique adaptative fonctionnat à travers la turbulence atmospher̀ique,” J. Opt. (Paris) 20, 13–23 (1989). [CrossRef]
  27. I. S. Gradshteyn, I. M. Ryzhik, eds., Tables of Integrals, Series, and Products (Academic, New York, 1980).
  28. G. C. Valley, “Isoplanatic degradation of tilt correction and short-term imaging systems,” Appl. Opt. 19, 574–577 (1980). [CrossRef] [PubMed]
  29. D. G. Sandler, S. Stahl, J. R. P. Angel, M. Lloyd-Hart, D. McCarthy, “Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes,” J. Opt. Soc. Am. A 11, 925–945 (1994). [CrossRef]
  30. R. Racine, B. L. Ellerbroek, “Profiles of nighttime turbulence above Mauna Kea and isoplanatism extension in adaptive optics,” in Adaptive Optical Systems and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE2534, 248–257 (1995). [CrossRef]
  31. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  32. N. Takato, I. Yamaguchi, “Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc. Am. A 12, 958–963 (1995). [CrossRef]
  33. S. Esposito, A. Riccardi, R. Ragazzoni, “Focus anisoplanatism effects on tip–tilt compensation for adaptive optics with use of a sodium laser beacon as a tracking reference,” J. Opt. Soc. Am. A 13, 1916–1923 (1996). [CrossRef]
  34. C. R. Neymann, “Focus anisoplanatism: a limit to the determination of tip–tilt with a laser guide star,” Opt. Lett. 21, 1806–1808 (1996). [CrossRef]
  35. M. S. Belen’kii, “Tilt sensing technique with a small aperture beam and related physical phenomena,” (U.S. Air Force Office of Scientific Research, Bolling AFB, Washington, D.C., 1996).
  36. M. S. Belen’kii, “Experimental study of the tilt angular correlation and the effect of stratospheric turbulence on star image motion,” (U.S. Air Force Office of Scientific Research, Bolling AFB, Washington, D.C., 1996).
  37. M. S. Belen’kii, S. J. Karis, J. M. Brown, R. Q. Fugate, “Measurements of tilt angular anisoplanatism,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 481–487 (1997). [CrossRef]
  38. A. Ghedina, R. Ragazzoni, A. Baruffolo, “Isokinetic patch measurements on the edge of the Moon,” Astron. Astrophys. Suppl. Ser. 130, 561–566 (1998). [CrossRef]
  39. A. Ziad, J. Borgnino, F. Martin, A. Agahi, “Experimental estimation of the spatial-coherence outer scale from a wave-front statistical analysis,” Astron. Astrophys. 282, 1021–1033 (1994).
  40. A. A. Tokovinin, A. Zaid, F. Martin, R. Avita, J. Borgnino, R. Cohan, M. Sazarin, “Wave-front outer scale monitoring at La Silla,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1155–1162 (1998). [CrossRef]
  41. C. E. Max, K. Avicula, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Rapp, J. T. Salmon, K. E. Waltien, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994). [CrossRef]
  42. M. P. Jelonek, R. Q. Fugate, W. J. Lange, A. C. Slavin, R. E. Ruane, R. A. Cleis, “Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser,” J. Opt. Soc. Am. A 11, 806–812 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited