OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6109–6117

Determining spatial modes of lasers with spatial coherence measurements

Carolyn M. Warnky, Betty Lise Anderson, and Charles A. Klein  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6109-6117 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explain a technique that extracts both the structure and the modal weights of spatial modes of lasers by analyzing the spatial coherence of the beam. This is the first time, to our knowledge, that an experimental method is being used to measure arbitrary forms of the spatial modes. We applied this method to an edge-emitting Fabry–Perot semiconductor laser with a stripe width of 5 µm and extracted fundamental and first-order lateral modes with relative power weights of 96.2% and 3.8%. There was a single transverse mode.

© 2000 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.5960) Lasers and laser optics : Semiconductor lasers

Original Manuscript: February 24, 2000
Revised Manuscript: August 8, 2000
Published: November 20, 2000

Carolyn M. Warnky, Betty Lise Anderson, and Charles A. Klein, "Determining spatial modes of lasers with spatial coherence measurements," Appl. Opt. 39, 6109-6117 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Wright, P. Greve, J. Fleischer, L. Austin, “Laser beam width, divergence and beam propagation factor–an international standardization approach,” Opt. Quantum Electron. 24, S993–S1000 (1992). [CrossRef]
  2. W. P. Dumke, “The angular beam divergence in double-heterojunction lasers with very thin active regions,” IEEE J. Quantum Electron. 11, 400–402 (1975). [CrossRef]
  3. A. Naqwi, F. Durst, “Focusing of diode laser beams: a simple mathematical model,” Appl. Opt. 29, 1780–1785 (1990). [CrossRef] [PubMed]
  4. X. Zeng, A. Naqwi, “Far-field distribution of double-heterostructure diode laser beams,” Appl. Opt. 32, 4491–4494 (1993). [CrossRef] [PubMed]
  5. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, L. Zeni, “Transverse mode analysis of a laser beam by near- and far-field intensity measurements,” Appl. Opt. 34, 7974–7978 (1995). [CrossRef] [PubMed]
  6. R. Borghi, M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Opt. Lett. 23, 313–315 (1998). [CrossRef]
  7. M. Santarsiero, F. Gori, R. Borghi, G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite–Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999). [CrossRef]
  8. A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993). [CrossRef]
  9. A. Liesenhoff, F. Rühl, “An interferometric method of laser beam analysis,” Rev. Sci. Instrum. 38, 4059–4065 (1995). [CrossRef]
  10. P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980). [CrossRef]
  11. E. Tervonen, J. Turunen, A. T. Friberg, “Transverse laser-mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409–414 (1989). [CrossRef]
  12. L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995). [CrossRef]
  13. F. Gori, M. Santarsiero, G. Guattari, “Coherence and the spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–678 (1993). [CrossRef]
  14. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). [CrossRef]
  15. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).
  17. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  18. E. Wolf, G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541–546 (1984). [CrossRef]
  19. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  20. C. Iaconis, I. A. Walmsley, “Direct measurement of the two-point field correlation function,” Opt. Lett. 21, 1783–1785 (1996). [CrossRef] [PubMed]
  21. A. A. Maciejewski, C. A. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robotics Res. 4, 109–117 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited