OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6151–6157

Application of superresolution techniques to ring laser gyroscopes: exploring the quantum limit

B. Tom King  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6151-6157 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two methods for extracting linewidth estimates from evenly sampled partially coherent signals, where white frequency fluctuations are the major source of noise, are discussed. The first method utilizes the Allan deviation, requiring multiple frequency estimates for each linewidth estimate. The second method utilizes the second-order autoregressive model to provide a linewidth estimate with each frequency estimate. A characterization shows that the latter technique is reliable for short data sets (≤1 s). The application of these techniques to large, quantum-noise-limited ring laser gyroscopes is demonstrated. The results of the analysis compare favorably with a theoretical analysis.

© 2000 Optical Society of America

OCIS Codes
(060.2800) Fiber optics and optical communications : Gyroscopes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect
(140.3370) Lasers and laser optics : Laser gyroscopes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

Original Manuscript: November 16, 1999
Revised Manuscript: July 28, 2000
Published: November 20, 2000

B. Tom King, "Application of superresolution techniques to ring laser gyroscopes: exploring the quantum limit," Appl. Opt. 39, 6151-6157 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Wilkinson, “Ring lasers,” Prog. Quantum Electron. 11, 1–103 (1987). [CrossRef]
  2. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985). [CrossRef]
  3. F. Aronowitz, Laser Applications: the Laser Gyro (Academic, New York, 1971).
  4. H. Statz, T. A. Dorschner, M. Holtz, I. Smith, The Multioscillator Ring Laser Gyroscope, Vol. 4 of the Laser Handbook (Elsevier, Amsterdam, 1985).
  5. C. H. Rowe, U. K. Schreiber, S. J. Cooper, B. T. King, M. Poulton, G. E. Stedman, “Design and operation of a very large ring laser gyroscope,” Appl. Opt. 38, 2516–2523 (1999). [CrossRef]
  6. H. R. Bilger, G. E. Stedman, M. P. Poulton, C. H. Rowe, Z. Li, P. V. Wells, “Ring laser for precision measurement of nonreciprocal phenomena,” IEEE Trans. Instrum. Meas. 42, 407–411 (1993). [CrossRef]
  7. G. E. Stedman, “Ring-laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615–688 (1997). [CrossRef]
  8. G. E. Stedman, H. R. Bilger, Z. Li, M. P. Poulton, C. H. Rowe, I. Vetharaniam, P. V. Wells, “Canterbury ring laser and tests for nonreciprocal phenomena,” Austr. J. Phys. 46, 87–101 (1993).
  9. R. Anderson, H. R. Bilger, G. E. Stedman, “‘Sagnac’ effect: a century of Earth-rotated interferometers,” Am. J. Phys. 62, 975–985 (1994). [CrossRef]
  10. H. R. Bilger, G. E. Stedman, Z. Li, U. Schreiber, M. Schneider, “Ring lasers for Geodesy,” IEEE Trans. Instrum. Meas. 44, 468–470 (1995). [CrossRef]
  11. R. S. Gross, “Correspondence between theory and observations of polar motion,” Geophys. J. Int. 109, 162–170 (1992). [CrossRef]
  12. R. S. Gross, “Combinations of Earth orientation measurements: SPACE94, COMB94, and POLE94,” J. Geophys. Res. 101, 8729–8740 (1996). [CrossRef]
  13. C. P. Wyss, D. N. Wright, B. T. King, D. P. McLeod, S. J. Cooper, G. E. Stedman, “Collision broadening and quantum noise in a very large laser gyroscope,” Opt. Commun. 174, 181–189 (2000). [CrossRef]
  14. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980). [CrossRef]
  15. D. G. Childers, ed., Modern Spectrum Analysis (Institute of Electrical and Electronics Engineers, New York, 1978).
  16. S. B. Kesler, Modern Spectrum Analysis II (Institute of Electrical and Electronics Engineers, New York, 1986).
  17. S. M. Kay, S. L. Marple, “Spectrum analysis—a modern perspective,” Proc. IEEE 69, 1380–1419 (1981); reprinted with related works in Ref. 15. [CrossRef]
  18. V. F. Pisarenko, “On the estimation of spectra by means of nonlinear functions of the covariance matrix,” Geophys. J. R. Astron. Soc. 28, 511–531 (1972). [CrossRef]
  19. V. F. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophys. J. R. Astron. Soc. 33, 347–366 (1973). [CrossRef]
  20. J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, M. O. Scully, “Quantum noise in ring laser gyros. I. Theoretical formulation of the problem,” Phys. Rev. A 25, 2214–2225 (1982). [CrossRef]
  21. J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, H. Risken, “Quantum noise in ring laser gyros. II. Numerical results,” Phys. Rev. A 25, 2226–2234 (1982). [CrossRef]
  22. J. D. Cresser, “Quantum noise in ring laser gyros. III. Approximate analytic results in unlocked region,” Phys. Rev. A 26, 398–409 (1982). [CrossRef]
  23. J. D. Cresser, “Theory of the spectrum of the quantised light field,” Phys. Rep. 94, 47–110 (1983). [CrossRef]
  24. J. P. Burg, “Maximum entropy spectral analysis,” In Proceedings of the 37th Meeting of the Society of Exploration Geophysicists (Society of Exploration Geophysicists, Tulsa, Okla., 1967); reprinted in Ref. 16.
  25. T. J. Ulrych, T. N. Bishop, “Maximum entropy spectral analysis and autoregressive decomposition,” Rev. Geophys. Space Phys. 13, 183–200 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited