OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6158–6164

Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift

Hideki Yokoi, Tetsuya Mizumoto, Nobuhiro Shinjo, Naoki Futakuchi, and Yoshiaki Nakano  »View Author Affiliations


Applied Optics, Vol. 39, Issue 33, pp. 6158-6164 (2000)
http://dx.doi.org/10.1364/AO.39.006158


View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the experimental study of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift. The isolator is equipped with an optical interferometer composed of tapered couplers, nonreciprocal phase shifters, and a reciprocal phase shifter. The nonreciprocal phase shifter was constructed by wafer direct bonding between the semiconductor guiding layer and the magneto-optic cladding layer. The isolator, designed for the 1.55-µm wavelength, was fabricated to investigate the characteristics of each component. By applying an external magnetic field to the nonreciprocal phase shifter, we achieved an isolation ratio of approximately 4.9 dB in the interferometric isolator.

© 2000 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3240) Optical devices : Isolators
(250.5300) Optoelectronics : Photonic integrated circuits

History
Original Manuscript: April 24, 2000
Revised Manuscript: August 1, 2000
Published: November 20, 2000

Citation
Hideki Yokoi, Tetsuya Mizumoto, Nobuhiro Shinjo, Naoki Futakuchi, and Yoshiaki Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-33-6158


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993). [CrossRef]
  2. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982). [CrossRef]
  3. T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. LT-4, 347–352 (1986). [CrossRef]
  4. Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. LT-4, 711–714 (1986). [CrossRef]
  5. H. Yokoi, T. Mizumoto, T. Takano, N. Shinjo, “Demonstration of an optical isolator by use of a nonreciprocal phase shift,” Appl. Opt. 38, 7409–7413 (1999). [CrossRef]
  6. H. Yokoi, T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33, 1787–1788 (1997). [CrossRef]
  7. S. H. Jones, K. M. Lau, “Selective area growth of high quality GaAs by OMCVD using native oxide masks,” J. Electrochem. Soc. 134, 3149–3155 (1987). [CrossRef]
  8. M. D. Scott, J. R. Riffat, I. Griffith, J. I. Davies, A. C. Marshall, “CODE: a novel MOVPE technique for the single stage growth of buried ridge double heterostructure lasers and waveguides,” J. Cryst. Growth 93, 820–824 (1988). [CrossRef]
  9. Y. D. Galeuchet, P. Roentgen, V. Graf, “Buried GaInAs/InP layers grown on nonplanar substrates by one-step low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 53, 2638–2640 (1988). [CrossRef]
  10. Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Technol. 8, 1621–1629 (1990). [CrossRef]
  11. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin films,” IEEE Trans. Microwave Theory Tech. MTT-30, 922–925 (1982). [CrossRef]
  12. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F-J. Schröteler, M. Wallenhorst, H. Dötsch, “Improved design of magnetooptic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998). [CrossRef]
  13. M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988). [CrossRef]
  14. T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994). [CrossRef]
  15. T. Shintaku, T. Uno, “Preparation of Ce-substituted yttrium iron garnet films for magneto-optic waveguide devices,” Jpn. J. Appl. Phys. 35, 4689–4691 (1996). [CrossRef]
  16. H. Yokoi, T. Mizumoto, M. Shimizu, T. Waniishi, N. Futakuchi, N. Kaida, Y. Nakano, “Analysis of GaInAsP surfaces by contact-angle measurement for wafer direct bonding with garnet crystals,” Jpn. J. Appl. Phys. 38, 4780–4783 (1999). [CrossRef]
  17. S. Sato, W. Pan, S. T. Chu, S. Endo, S. Suzuki, Y. Kokubun, “59-nm trimming of center wavelength of ARROW-type vertical coupler filter by UV irradiation,” IEEE Photon. Technol. Lett. 11, 358–360 (1999). [CrossRef]
  18. T. K. Sudoh, Y. Nakano, K. Tada, “Wavelength trimming technology for multiple-wavelength distributed-feedback laser arrays by photo-induced refractive index change,” Electron. Lett. 33, 216–217 (1997). [CrossRef]
  19. T. K. Sudoh, M. Kumano, Y. Nakano, K. Tada, “Wavelength trimming by photoabsorption-induced disordering by multiple-wavelength distributed-feedback laser arrays,” IEEE Photon. Technol. Lett. 9, 887–888 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited