OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6174–6187

Intracavity beam behavior in hybrid resonator planar-waveguide CO2 lasers

Bartosz Wasilewski, Howard J. Baker, and Denis R. Hall  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6174-6187 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a combined computer simulation and experimental investigation of the intracavity spatial beam profile characteristics of a planar-waveguide rf-excited CO2 laser that incorporates a hybrid waveguide confocal unstable negative-branch resonator. The study includes results for the intracavity lateral beam intensity profile and output power of the laser as a function of resonator mirror misalignment. In addition, the behavior of the unstable resonator, observed experimentally and predicted by the simulation, in generating localized high intensity hot-spots when it is subjected to relatively large misalignment angles is reported.

© 2000 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3470) Lasers and laser optics : Lasers, carbon dioxide

Original Manuscript: March 28, 2000
Revised Manuscript: July 31, 2000
Published: November 20, 2000

Bartosz Wasilewski, Howard J. Baker, and Denis R. Hall, "Intracavity beam behavior in hybrid resonator planar-waveguide CO2 lasers," Appl. Opt. 39, 6174-6187 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. E. Jackson, H. J. Baker, D. R. Hall, “A CO2 large area laser using an unstable-waveguide hybrid resonator,” Appl. Phys. Lett. 54, 1950–1952 (1989). [CrossRef]
  2. R. Nowack, H. Opower, U. Schaefer, K. Wessel, Th. Hall, “High power CO2 waveguide lasers of the 1 kW category,” in CO2 Lasers and Applications II, H. Opower, ed., Proc. SPIE1276, 18–28 (1990). [CrossRef]
  3. J. Nishima, K. Yoshizawa, “CO2 slab laser excited by 2.45 GHz microwave discharge,” in High-Power Gas Lasers, P. V. Avizonis, C. Freed, J. J. Kim, F. K. Tittel, eds., Proc. SPIE1225, 340–349 (1990). [CrossRef]
  4. R. T. Brown, L. A. Newman, M. W. Murray, R. A. Hart, “Large volume pulsed RF-excited waveguide CO2 laser,” IEEE J. Quantum Electron. 28, 404–407 (1992). [CrossRef]
  5. C. J. Shackleton, H. J. Baker, D. R. Hall, “Lateral and transverse mode properties of slab waveguide lasers,” Opt. Commun. 89, 423–428 (1992). [CrossRef]
  6. A. D. Colley, F. Villarreal, K. M. Abramski, H. J. Baker, D. R. Hall, “High brightness waveguide slab carbon monoxide laser,” Appl. Phys. Lett. 64, 2916–2918 (1994). [CrossRef]
  7. J. J. Wendland, R. J. Morley, H. J. Baker, D. R. Hall, “High power mid infrared operation of the atomic xenon laser,” Appl. Phys. Lett. 72, 1436–1438 (1998). [CrossRef]
  8. A. Faulstich, H. J. Baker, D. R. Hall, “Face pumping of thin solid-state lasers with laser diodes,” Opt. Lett. 21, 594–596 (1996). [CrossRef] [PubMed]
  9. Diamond Lasers Product Brochures, Coherent, Inc., http://www.cohr.com ; DC series lasers, Rofin-Sinar Laser GmbH, http://www.rofin-sinar.com/ .
  10. A. G. Fox, T. Li, “Computation of optical resonator modes by the method of resonance excitation,” IEEE J. Quantum Electron. QE-4, 460–465 (1968). [CrossRef]
  11. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970). [CrossRef] [PubMed]
  12. E. A. Sziklas, A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain,” Appl. Opt. 14, 1874–1889 (1975). [CrossRef] [PubMed]
  13. D. B. Rensch, A. N. Chester, “Iterative diffraction calculations of transverse mode distributions in confocal unstable laser resonators,” Appl. Opt. 12, 997–1010 (1973). [CrossRef] [PubMed]
  14. C. S. Burrus, I. W. Selesnick, “Fast convolution and filtering,” in The Digital Signal Processing Handbook, V. K. Madessetti, D. B. Williams, eds. (CRC Press, Boca Raton, Fla., 1997).
  15. R. J. Morley, “RF excited CO2 laser amplifiers for lidar,” Ph.D. dissertation (Heriot-Watt University, Edinburgh, UK, 1992), Chap. 5.
  16. Data courtesy of V & S Scientific, Ltd., Hertfordshire, UK.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited