OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6207–6220

Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method

Anne Vermeulen, Claude Devaux, and Maurice Herman  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6207-6220 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method has been developed for retrieving the scattering and microphysical properties of atmospheric aerosol from measurements of solar transmission, aureole, and angular distribution of the scattered and polarized sky light in the solar principal plane. Numerical simulations of measurements have been used to investigate the feasibility of the method and to test the algorithm’s performance. It is shown that the absorption and scattering properties of an aerosol, i.e., the single-scattering albedo, the phase function, and the polarization for single scattering of incident unpolarized light, can be obtained by use of radiative transfer calculations to correct the values of scattered radiance and polarized radiance for multiple scattering, Rayleigh scattering, and the influence of ground. The method requires only measurement of the aerosol’s optical thickness and an estimate of the ground’s reflectance and does not need any specific assumption about properties of the aerosol. The accuracy of the retrieved phase function and polarization of the aerosols is examined at near-infrared wavelengths (e.g., 0.870 µm). The aerosol’s microphysical properties (size distribution and complex refractive index) are derived in a second step. The real part of the refractive index is a strong function of the polarization, whereas the imaginary part is strongly dependent on the sky’s radiance and the retrieved single-scattering albedo. It is demonstrated that inclusion of polarization data yields the real part of the refractive index.

© 2000 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(260.5430) Physical optics : Polarization
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.4210) Scattering : Multiple scattering

Original Manuscript: August 4, 2000
Revised Manuscript: August 4, 2000
Published: November 20, 2000

Anne Vermeulen, Claude Devaux, and Maurice Herman, "Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method," Appl. Opt. 39, 6207-6220 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994). [CrossRef]
  2. Y. J. Kaufman, D. D. Herring, K. J. Ranson, G. J. Collatz, “Earth observing system AM1 mission to Earth,” IEEE Trans. Geosci. Remote Sens. 36, 1045–1055 (1998). [CrossRef]
  3. D. Tanré, Y. J. Kaufman, M. Herman, S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res. 102, 16971–16988 (1997). [CrossRef]
  4. J. V. Martonchik, D. J. Diner, R. A. Kahn, T. P. Ackerman, M. E. Verstraete, B. Pinty, H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998). [CrossRef]
  5. M. Herman, J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, D. Tanré, “Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements,” J. Geophys. Res. 102, 17039–17049 (1997). [CrossRef]
  6. Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 16815–16830 (1997). [CrossRef]
  7. E. F. Vermote, N. Z. El Saleous, C. O. Justice, Y. J. Kaufman, L. Remer, J. C. Roger, D. Tanré, “Atmospheric correction of visible to middle infrared EOS-MODIS data over land surface, background, operational algorithm and validation,” J. Geophys. Res. 102, 17131–17141 (1997). [CrossRef]
  8. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  9. M. D. King, D. M. Byrne, B. M. Herman, J. A. Reagan, “Aerosol size distributions obtained by inversion of spectral optical depth measurements,” J. Atmos. Sci. 35, 2153–2167 (1978). [CrossRef]
  10. G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18, 988–993 (1979). [CrossRef] [PubMed]
  11. M. A. Box, A. Deepak, “Retrieval of aerosol size distribution by inversion of solar aureole data in the presence of multiple scattering,” Appl. Opt. 18, 1376–1382 (1979). [CrossRef] [PubMed]
  12. J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distribution,” J. Atmos. Sci. 32, 584–591 (1975). [CrossRef]
  13. N. T. O’Neill, J. R. Miller, “Combined solar aureole and solar beam extinction measurements. 2. Studies of the inferred aerosol size distribution,” Appl. Opt. 23, 3697–3704 (1984). [CrossRef]
  14. D. Tanré, C. Devaux, M. Herman, R. Santer, J. Y. Gac, “Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths,” J. Geophys. Res. 93, 14223–14231 (1988). [CrossRef]
  15. Y. J. Kaufman, A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, B. N. Holben, “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” J. Geophys. Res. 99, 10341–10356 (1994). [CrossRef]
  16. T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983). [CrossRef] [PubMed]
  17. M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609, (1993).
  18. C. Devaux, A. Vermeulen, J. L. Deuzé, P. Dubuisson, M. Herman, R. Santer, M. Verbrugghe, “Retrieval of aerosol single-scattering albedo from ground-based measurements: application to observational data,” J. Geophys. Res. 103, pp. 8753–8761 (1998).
  19. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate dispersion,” Appl. Opt. 35, 2672–2686 (1996). [CrossRef] [PubMed]
  20. M. Wendisch, W. von Hoyningen-Huene, “Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,” Atmos. Environ. 28, 785–792 (1994). [CrossRef]
  21. P. Romanov, N. T. O’Neill, A. Royer, B. McArthur, “Simultaneous retrieval of aerosol refractive index and particule size distribution from ground based measurements of direct and scattered radiation,” Appl. Opt. 38, 7305–73201999.
  22. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  23. Z. Sekera, “Light scattering in the atmosphere and the polarization of sky light,” J. Opt. Soc. Am. 47, 484–490 (1957). [CrossRef]
  24. R. Eiden, “Determination of the complex index of refraction of spherical aerosol particles,” Appl. Opt. 10, 749–754 (1971). [CrossRef] [PubMed]
  25. M. I. Mishchenko, L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102, 16989–17013 (1997). [CrossRef]
  26. B. M. Herman, S. R. Browning, R. J. Curran, “The effect of atmospheric aerosols on scattered sunlight,” J. Atmos. Sci. 28, 419–428 (1971). [CrossRef]
  27. J. L. Deuzé, C. Devaux, M. Herman, R. Santer, D. Tanré, “Saharan aerosols over the south of France: characterization derived from satellite data and ground based measurements,” J. Appl. Meteorol. 27, 680–686 (1988). [CrossRef]
  28. J. L. Deuzé, C. Devaux, M. Herman, R. Santer, J. Y. Balois, L. Gonzalez, P. Lecomte, C. Verwaerde, “Photopolarimetric observations of aerosols and cloud from balloon,” Remote Sens. Environ. 29, 93–110 (1989). [CrossRef]
  29. B. Cairns, B. E. Carlson, A. A. Lacis, E. E. Russell, “An analysis of ground-based polarimetric sky radiance measurements,” in Polarization: Measurement, Analysis, and Remote Sensing, R. A. Chipman, D. H. Goldstein, eds., Proc. SPIE3121, 383–393 (1997).
  30. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, Oxford, 1950) [Dover, New York, (1960)].
  31. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971). [CrossRef]
  32. J. L. Deuzé, M. Herman, R. Santer, “Fourier series expansion of the transfer equation in the atmosphere–ocean system,” J. Quant. Spectros. Rad. Transfer 41, 483–494 (1989). [CrossRef]
  33. A. Vermeulen, “Caractérisation des aérosols à partir de mesures optiques passives au sol: apport des luminances totale et polarisée dans le plan principal,” Ph.D. dissertation (Université des Sciences et Technologies de Lille, Lille, France1996).
  34. F. M. Bréon, D. Tanré, P. Lecomte, M. Herman, “Polarized reflectance of bare soils and vegetation: measurements and models,” IEEE Trans. Geosci. Remote Sens. 33, 487–499 (1995). [CrossRef]
  35. B. Lafrance, “Modélisation simplifiée de la lumière polarisée émergeant de l’atmosphère. Correction de l’impact des aérosols stratosphériques sur les mesures de POLDER, “Thèse (Université des Sciences et Technologies de Lille, Lille, France, 1997).
  36. G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  37. J. E. Hansen, J. M. Hovenier, “Interpretation of the polarization of venus,” J. Atmos. Sci. 31, 1137–1160 (1974). [CrossRef]
  38. R. Santer, M. Herman, “Particle size distribution from forward scattered light using the Chahine inversion scheme,” Appl. Opt. 22, 2294–2302 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited