OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 33 — Nov. 20, 2000
  • pp: 6238–6242

Measurements of benzene concentration by difference-frequency laser absorption spectroscopy

Weidong Chen, Fabrice Cazier, Frank Tittel, and Daniel Boucher  »View Author Affiliations

Applied Optics, Vol. 39, Issue 33, pp. 6238-6242 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (98 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of benzene concentration based on high-resolution laser absorption spectroscopy by use of the R(6) transition in the ν4 fundamental vibrational band near 14.8 µm (676.6 cm-1) are reported. These measurements were performed with a tunable continuous-wave, mid-infrared spectroscopic light source that employs difference-frequency mixing of two Ti:sapphire lasers in a GaSe nonlinear optical crystal. A minimum benzene concentration detection of ∼11.5 parts in 106 was realized at a reduced pressure of 40 mbars.

© 2000 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

Original Manuscript: February 2, 2000
Revised Manuscript: August 31, 2000
Published: November 20, 2000

Weidong Chen, Fabrice Cazier, Frank Tittel, and Daniel Boucher, "Measurements of benzene concentration by difference-frequency laser absorption spectroscopy," Appl. Opt. 39, 6238-6242 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Evans, T. Lumpkin, D. Smith, M. Somerville, “Measurements of VOCs from the TAMS Network,” J. Air Waste Manage. Assoc. 42, 1319–1323 (1992).
  2. P. L. Hanst, S. T. Hanst, “Gas measurement in the fundamental infrared region,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 335–470.
  3. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.
  4. R. Atkinson, C. Boissard, X. Cao, J. Chandler, D. R. Crump, T. J. Davies, M. Delaney, R. G. Derwent, G. J. Dollard, S. C. Duckham, P. Dumitrean, R. A. Field, C. N. Hewitt, B. M. R. Jones, P. M. Midgley, J. Murlis, P. D. Nason, N. R. Passant, D. Watkins, “Volatile organic compounds in the atmosphere,” in Issues in Environmental Science and Technology 4, R. E. Hester, R. M. Harrison, eds., (Royal Society of Chemistry, London, 1995).
  5. J. Berger, V. V. Pustogov, “Monitoring of benzene in the 10 µm and 14 µm region,” Infrared Phys. Technol. 37, 163–166 (1996). [CrossRef]
  6. J. Waschull, B. Sumpf, Y. Heiner, H.-D. Kronfeldt, “Diode laser spectroscopy in the ν14 band of benzene,” Infrared Phys. Technol. 37, 193–198 (1996). [CrossRef]
  7. B. Patterson, J. Lenney, W. Sibbett, B. Hirst, N. Hedges, M. Padgett, “Detection of benzene and other gases with an open-path, static Fourier-transform UV spectrometer,” Appl. Opt. 37, 3172–3175 (1998). [CrossRef]
  8. W. Chen, G. Mouret, D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998). [CrossRef]
  9. W. Chen, J. Burie, D. Boucher, “Mid-infrared generation by optical frequency conversion and applications to spectroscopy and air monitoring,” Spectrochim. Acta A 55, 2057–2075 (1999). [CrossRef]
  10. W. Eckhoff, R. Putnam, S. Wang, R. Curl, F. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
  11. R. Putnam, D. Lancaster, “Continuous-wave laser spectrometer automatically aligned and continuously tuned from 11.8 to 16.1 µm by use of diode-laser-pumped difference-frequency generation in GaSe,” Appl. Opt. 38, 1513–1522 (1999). [CrossRef]
  12. T. Blanke, U. Willer, W. Schade, “Spectroscopic applications of a widely tunable (6.8–12.5 µm) cw-DFG-laser spectrometer,” in Environmental Sensing and Applications, K. Weitkamp, K. Schaefer, R. Reuter, K. Weber, T. Lamp, G. M. Russwurm, J. Wolf, L. Woppowa, eds., Proc. SPIE3821, 136–144 (1999). [CrossRef]
  13. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, B. Gerard, E. Lallier, “Quasi-phase matched frequency conversion in all-epitaxial, orientation patterned 200-mm-thick GaAs films,” (Stanford University, Stanford, Calif., 1999), pp. 37–41.
  14. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1991).
  15. J. Kauppinen, P. Jensen, S. Brodersen, “Determination of the B0 constant of C6H6,” J. Mol. Spectrosc. 83, 161–174 (1980). [CrossRef]
  16. M. Dang-Nhu, J. Pliva, “Intensities in the ν4, ν12, ν13, and ν14 bands of benzene,” J. Mol. Spectrosc. 138, 423–429 (1989). [CrossRef]
  17. M.-L. Junttila, J. L. Domenech, G. T. Fraser, A. S. Pine, “Molecular-beam optothermal spectroscopy of the 9.6-µm ν14 band of benzene,” J. Mol. Spectrosc. 147, 513–520 (1991). [CrossRef]
  18. G. Guelachvili, K. N. Rao, eds., Handbook of Infrared Standards (Academic, London, 1986).
  19. N. Jacquinet-Husson, E. Arié, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chédin, A. Chursin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrié, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvili, J. M. Hartmann, J. C. Hilico, J. Hillman, G. Lefèvre, E. Lellouch, S. N. Mikhaïlenko, O. V. Naumenko, V. Nemtchinov, D. A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, V. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205–254 (1999). [CrossRef]
  20. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited