OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 39, Iss. 34 — Dec. 1, 2000
  • pp: 6288–6294

Polarization-modulated differential-interference contrast microscopy with a variable retarder

George M. Holzwarth, David B. Hill, and Ethan B. McLaughlin  »View Author Affiliations

Applied Optics, Vol. 39, Issue 34, pp. 6288-6294 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A liquid-crystal variable retarder inserted into a differential-interference contrast video microscope switches image highlights into shadows and vice versa in alternate frames. Synchronous computation and display of the difference between alternate frames yield a stream of images with doubled contrast and reduced fixed-position noise because of the automatic background subtraction. The measured signal-to-noise ratio (SNR) peaks when the modulation ±Γ of the retarder equals the phase shift δ of the sample. A Jones calculus model of the central ray in the polarization-modulated differential-interference contrast microscope yields SNR=sin Γ sin δ1-cos Γ cos δN, where N is the rms time-dependent photon noise. This expression fits the experiments closely for 1.8° ≤ Γ ≤ 115°.

© 2000 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(180.3170) Microscopy : Interference microscopy
(230.2090) Optical devices : Electro-optical devices

Original Manuscript: February 2, 2000
Revised Manuscript: May 19, 2000
Published: December 1, 2000

George M. Holzwarth, David B. Hill, and Ethan B. McLaughlin, "Polarization-modulated differential-interference contrast microscopy with a variable retarder," Appl. Opt. 39, 6288-6294 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Allen, G. B. David, G. Z. Nomarski, “The Zeiss–Nomarski differential interference equipment for transmitted-light microscopy,” Wiss. Mikros. Mikroscop. Technol. 69, 193–221 (1960).
  2. S. Inoué, Video Microscopy (Plenum, New York, 1986). [CrossRef]
  3. E. D. Salmon, P. Tran, “High-resolution video-enhanced differential interference contrast (VE-DIC) light microscopy,” Meth. Cell Biol. 56, 153–185 (1998). [CrossRef]
  4. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, San Diego, Calif., 1996).
  5. G. Nomarski, “Microinterferometre differential à ondes polarisées,” J. Phys. Radium Paris 16, 9–13 (1955).
  6. R. D. Allen, N. S. Allen, J. L. Travis, “Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy,” Cell Motil. 1, 291–302 (1981).
  7. S. Inoué, “Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy,” J. Cell Biol. 89, 346–356 (1981). [CrossRef] [PubMed]
  8. R. D. Allen, N. S. Allen, “Video-enhanced microscopy with a computer frame memory,” J. Microsc. 129, 3–17 (1983). [CrossRef] [PubMed]
  9. E. D. Salmon, “VE-DIC light microscopy and the discovery of kinesin,” Trends Cell Biol. 5, 154–158 (1995). [CrossRef] [PubMed]
  10. G. Holzwarth, S. C. Webb, D. J. Kubinski, N. S. Allen, “Improving DIC microscopy with polarization modulation,” J. Microsc. 188, 249–254 (1997). [CrossRef]
  11. H. Ishiwata, M. Itoh, T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 21–24 (1996). [CrossRef]
  12. T. R. Corle, G. S. Kino, “Differential interference contrast imaging on a real-time confocal scanning optical microscope,” Appl. Opt. 29, 3769–3774 (1990). [CrossRef] [PubMed]
  13. R. Oldenbourg, “Polarized light microscopy of spindles,” Meth. Cell Biol. 61, 175–208 (1999). [CrossRef]
  14. N. J. Bershad, A. J. Rockmore, “On estimating signal-to-noise ratio using the sample correlation coefficient,” IEEE Trans. Inf. Theory 20, 112–113 (1974). [CrossRef]
  15. J. Frank, L. Al-Ali, “Signal-to-noise ratio of electron micrographs obtained by cross correlation,” Nature 256, 376–379 (1975). [CrossRef] [PubMed]
  16. E. Collett, Polarized Light (Marcel Dekker, New York, 1993), Chap. 10.
  17. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).
  18. G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., Vol. PM57 of SPIE Monographs and Handbooks Series (SPIE Press, Bellingham, Wash., 1998).
  19. D. Axelrod, “Fluorescence polarization microscopy,” Meth. Cell Biol. 30, 333–352 (1989). [CrossRef]
  20. R. A. Chipman, “Mechanics of polarization ray tracing,” Opt. Eng. 34, 1636–1645 (1995). [CrossRef]
  21. F. Kagalwala, T. Kanade, “Computational model of image formation process in DIC microscopy,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing V, C. J. Cogswell, J. Conchello, J. M. Lerner, T. T. Lu, T. Wilson, eds., Proc. SPIE3261, 193–204 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited